Loading…
Learning combined feedback and feedforward control of a musculoskeletal system
The goal of this paper is the learning of neuromuscular control, given the following necessary conditions: (1) time delays in the control loop, (2) non-linear muscle characteristics, (3) learning of feedforward and feedback control, (4) possibility of feedback gain modulation during a task. A contro...
Saved in:
Published in: | Biological cybernetics 1996-07, Vol.75 (1), p.73-83 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The goal of this paper is the learning of neuromuscular control, given the following necessary conditions: (1) time delays in the control loop, (2) non-linear muscle characteristics, (3) learning of feedforward and feedback control, (4) possibility of feedback gain modulation during a task. A control system and learning methodology that satisfy those conditions is given. The control system contains a neural network, comprising both feedforward and feedback control. The learning method is backpropagation through time with an explicit sensitivity model. Results will be given for a one degree of freedom arm with two muscles. Good control results are achieved which compare well with experimental data. Analysis of the controller shows that significant differences in controller characteristics are found if the loop delays are neglected. During a control task the system shows feedback gain modulation, similar to experimentally found reflex gain modulation during rapid voluntary contraction. If only limited feedback information is available to the controller the system learns to co-contract the antagonistic muscle pair. In this way joint stiffness increases and stable control is more easily maintained. |
---|---|
ISSN: | 0340-1200 1432-0770 |
DOI: | 10.1007/bf00238741 |