Loading…

A neuronal learning rule for sub-millisecond temporal coding

A PARADOX that exists in auditory and electrosensory neural systems 1,2 is that they encode behaviourally relevant signals in the range of a few microseconds with neurons that are at least one order of magnitude slower. The importance of temporal coding in neural information processing is not clear...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 1996-09, Vol.383 (6595), p.76-78
Main Authors: Gerstner, Wulfram, Kempter, Richard, van Hemmen, J. Leo, Wagner, Hermann
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 78
container_issue 6595
container_start_page 76
container_title Nature (London)
container_volume 383
creator Gerstner, Wulfram
Kempter, Richard
van Hemmen, J. Leo
Wagner, Hermann
description A PARADOX that exists in auditory and electrosensory neural systems 1,2 is that they encode behaviourally relevant signals in the range of a few microseconds with neurons that are at least one order of magnitude slower. The importance of temporal coding in neural information processing is not clear yet 3–8 . A central question is whether neuronal firing can be more precise than the time constants of the neuronal processes involved 9 . Here we address this problem using the auditory system of the barn owl as an example. We present a modelling study based on computer simulations of a neuron in the laminar nucleus. Three observations explain the paradox. First, spiking of an 'integrate-and-fire' neuron driven by excitatory postsynaptic potentials with a width at half-maximum height of 250 μs, has an accuracy of 25 μs if the presynaptic signals arrive coherently. Second, the necessary degree of coherence in the signal arrival times can be attained during ontogenetic development by virtue of an unsupervised hebbian learning rule. Learning selects connections with matching delays from a broad distribution of axons with random delays. Third, the learning rule also selects the correct delays from two independent groups of inputs, for example, from the left and right ear.
doi_str_mv 10.1038/383076a0
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_78281812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743339019</sourcerecordid><originalsourceid>FETCH-LOGICAL-p262t-e43c1c1206d4bb03c3e49d5198b2116f4ce1952c6a7e6017823cb5bfda9d1e833</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgypxT8B8QigfFQ_W9JE1S8DKGv2DgRc8lTdPR0TY1WQ_-92ZsInhQcsjh-3nfw3uEnCPcIjB1xxQDKTQckClyKVIulDwkUwCqUlBMHJOTENYAkKHkEzJRUuYS1ZTcz5Pejt71uk1aq33f9KvEj61NaueTMJZp17RtE6xxfZVsbDc4H6lxVYSn5KjWbbBn-39G3h8f3hbP6fL16WUxX6YDFXSTWs4MGqQgKl6WwAyzPK8yzFVJEUXNjcU8o0ZoaQWgVJSZMivrSucVWsXYjFztegfvPkYbNkXXBGPbVvfWjaGIEwoV0giv_4acMZYD5v9WYiY4ZRwivPwF1270cV2hoMC52L6ILvZoLDtbFYNvOu0_i_2aY36zy0NM-pX1PyUIxfaCxfcF2RdBroiu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204464646</pqid></control><display><type>article</type><title>A neuronal learning rule for sub-millisecond temporal coding</title><source>Nature</source><creator>Gerstner, Wulfram ; Kempter, Richard ; van Hemmen, J. Leo ; Wagner, Hermann</creator><creatorcontrib>Gerstner, Wulfram ; Kempter, Richard ; van Hemmen, J. Leo ; Wagner, Hermann</creatorcontrib><description>A PARADOX that exists in auditory and electrosensory neural systems 1,2 is that they encode behaviourally relevant signals in the range of a few microseconds with neurons that are at least one order of magnitude slower. The importance of temporal coding in neural information processing is not clear yet 3–8 . A central question is whether neuronal firing can be more precise than the time constants of the neuronal processes involved 9 . Here we address this problem using the auditory system of the barn owl as an example. We present a modelling study based on computer simulations of a neuron in the laminar nucleus. Three observations explain the paradox. First, spiking of an 'integrate-and-fire' neuron driven by excitatory postsynaptic potentials with a width at half-maximum height of 250 μs, has an accuracy of 25 μs if the presynaptic signals arrive coherently. Second, the necessary degree of coherence in the signal arrival times can be attained during ontogenetic development by virtue of an unsupervised hebbian learning rule. Learning selects connections with matching delays from a broad distribution of axons with random delays. Third, the learning rule also selects the correct delays from two independent groups of inputs, for example, from the left and right ear.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/383076a0</identifier><identifier>PMID: 8779718</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Auditory Pathways ; Auditory Perception - physiology ; Birds ; Computer Simulation ; Ears &amp; hearing ; Hearing - physiology ; Humanities and Social Sciences ; letter ; Membrane Potentials ; multidisciplinary ; Neurons ; Neurons, Afferent - physiology ; Owls ; Reaction Time ; Science ; Science (multidisciplinary) ; Simulation ; Synapses - physiology ; Tyto alba</subject><ispartof>Nature (London), 1996-09, Vol.383 (6595), p.76-78</ispartof><rights>Springer Nature Limited 1996</rights><rights>Copyright Macmillan Journals Ltd. Sep 5, 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8779718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerstner, Wulfram</creatorcontrib><creatorcontrib>Kempter, Richard</creatorcontrib><creatorcontrib>van Hemmen, J. Leo</creatorcontrib><creatorcontrib>Wagner, Hermann</creatorcontrib><title>A neuronal learning rule for sub-millisecond temporal coding</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>A PARADOX that exists in auditory and electrosensory neural systems 1,2 is that they encode behaviourally relevant signals in the range of a few microseconds with neurons that are at least one order of magnitude slower. The importance of temporal coding in neural information processing is not clear yet 3–8 . A central question is whether neuronal firing can be more precise than the time constants of the neuronal processes involved 9 . Here we address this problem using the auditory system of the barn owl as an example. We present a modelling study based on computer simulations of a neuron in the laminar nucleus. Three observations explain the paradox. First, spiking of an 'integrate-and-fire' neuron driven by excitatory postsynaptic potentials with a width at half-maximum height of 250 μs, has an accuracy of 25 μs if the presynaptic signals arrive coherently. Second, the necessary degree of coherence in the signal arrival times can be attained during ontogenetic development by virtue of an unsupervised hebbian learning rule. Learning selects connections with matching delays from a broad distribution of axons with random delays. Third, the learning rule also selects the correct delays from two independent groups of inputs, for example, from the left and right ear.</description><subject>Animals</subject><subject>Auditory Pathways</subject><subject>Auditory Perception - physiology</subject><subject>Birds</subject><subject>Computer Simulation</subject><subject>Ears &amp; hearing</subject><subject>Hearing - physiology</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Membrane Potentials</subject><subject>multidisciplinary</subject><subject>Neurons</subject><subject>Neurons, Afferent - physiology</subject><subject>Owls</subject><subject>Reaction Time</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Simulation</subject><subject>Synapses - physiology</subject><subject>Tyto alba</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqF0c9LwzAUB_AgypxT8B8QigfFQ_W9JE1S8DKGv2DgRc8lTdPR0TY1WQ_-92ZsInhQcsjh-3nfw3uEnCPcIjB1xxQDKTQckClyKVIulDwkUwCqUlBMHJOTENYAkKHkEzJRUuYS1ZTcz5Pejt71uk1aq33f9KvEj61NaueTMJZp17RtE6xxfZVsbDc4H6lxVYSn5KjWbbBn-39G3h8f3hbP6fL16WUxX6YDFXSTWs4MGqQgKl6WwAyzPK8yzFVJEUXNjcU8o0ZoaQWgVJSZMivrSucVWsXYjFztegfvPkYbNkXXBGPbVvfWjaGIEwoV0giv_4acMZYD5v9WYiY4ZRwivPwF1270cV2hoMC52L6ILvZoLDtbFYNvOu0_i_2aY36zy0NM-pX1PyUIxfaCxfcF2RdBroiu</recordid><startdate>19960905</startdate><enddate>19960905</enddate><creator>Gerstner, Wulfram</creator><creator>Kempter, Richard</creator><creator>van Hemmen, J. Leo</creator><creator>Wagner, Hermann</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19960905</creationdate><title>A neuronal learning rule for sub-millisecond temporal coding</title><author>Gerstner, Wulfram ; Kempter, Richard ; van Hemmen, J. Leo ; Wagner, Hermann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p262t-e43c1c1206d4bb03c3e49d5198b2116f4ce1952c6a7e6017823cb5bfda9d1e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Animals</topic><topic>Auditory Pathways</topic><topic>Auditory Perception - physiology</topic><topic>Birds</topic><topic>Computer Simulation</topic><topic>Ears &amp; hearing</topic><topic>Hearing - physiology</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Membrane Potentials</topic><topic>multidisciplinary</topic><topic>Neurons</topic><topic>Neurons, Afferent - physiology</topic><topic>Owls</topic><topic>Reaction Time</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Simulation</topic><topic>Synapses - physiology</topic><topic>Tyto alba</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerstner, Wulfram</creatorcontrib><creatorcontrib>Kempter, Richard</creatorcontrib><creatorcontrib>van Hemmen, J. Leo</creatorcontrib><creatorcontrib>Wagner, Hermann</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerstner, Wulfram</au><au>Kempter, Richard</au><au>van Hemmen, J. Leo</au><au>Wagner, Hermann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neuronal learning rule for sub-millisecond temporal coding</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>1996-09-05</date><risdate>1996</risdate><volume>383</volume><issue>6595</issue><spage>76</spage><epage>78</epage><pages>76-78</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>A PARADOX that exists in auditory and electrosensory neural systems 1,2 is that they encode behaviourally relevant signals in the range of a few microseconds with neurons that are at least one order of magnitude slower. The importance of temporal coding in neural information processing is not clear yet 3–8 . A central question is whether neuronal firing can be more precise than the time constants of the neuronal processes involved 9 . Here we address this problem using the auditory system of the barn owl as an example. We present a modelling study based on computer simulations of a neuron in the laminar nucleus. Three observations explain the paradox. First, spiking of an 'integrate-and-fire' neuron driven by excitatory postsynaptic potentials with a width at half-maximum height of 250 μs, has an accuracy of 25 μs if the presynaptic signals arrive coherently. Second, the necessary degree of coherence in the signal arrival times can be attained during ontogenetic development by virtue of an unsupervised hebbian learning rule. Learning selects connections with matching delays from a broad distribution of axons with random delays. Third, the learning rule also selects the correct delays from two independent groups of inputs, for example, from the left and right ear.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>8779718</pmid><doi>10.1038/383076a0</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 1996-09, Vol.383 (6595), p.76-78
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_78281812
source Nature
subjects Animals
Auditory Pathways
Auditory Perception - physiology
Birds
Computer Simulation
Ears & hearing
Hearing - physiology
Humanities and Social Sciences
letter
Membrane Potentials
multidisciplinary
Neurons
Neurons, Afferent - physiology
Owls
Reaction Time
Science
Science (multidisciplinary)
Simulation
Synapses - physiology
Tyto alba
title A neuronal learning rule for sub-millisecond temporal coding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neuronal%20learning%20rule%20for%20sub-millisecond%20temporal%20coding&rft.jtitle=Nature%20(London)&rft.au=Gerstner,%20Wulfram&rft.date=1996-09-05&rft.volume=383&rft.issue=6595&rft.spage=76&rft.epage=78&rft.pages=76-78&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/383076a0&rft_dat=%3Cproquest_pubme%3E743339019%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p262t-e43c1c1206d4bb03c3e49d5198b2116f4ce1952c6a7e6017823cb5bfda9d1e833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204464646&rft_id=info:pmid/8779718&rfr_iscdi=true