Loading…

ABO glycosyltransferase genotyping by polymerase chain reaction using sequence-specific primers

Serological typing for the classical ABO blood groups is routinely performed using anti-A and anti-B antisera of polyclonal or monoclonal origin, which are able to distinguish four phenotypes (A, B, AB, and O). Modern molecular biology methods offer the possibility of direct ABO genotyping without t...

Full description

Saved in:
Bibliographic Details
Published in:Blood 1996-09, Vol.88 (5), p.1852-1856
Main Authors: GASSNER, C, SCHMARDA, A, NUSSBAUMER, W, SCHĂ–NITZER, D
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Serological typing for the classical ABO blood groups is routinely performed using anti-A and anti-B antisera of polyclonal or monoclonal origin, which are able to distinguish four phenotypes (A, B, AB, and O). Modern molecular biology methods offer the possibility of direct ABO genotyping without the need for family investigations. Typing can be done with small amounts of DNA and without detection of blood group molecules on the surface of red blood cells. We developed a system of eight polymerase chain reactions (PCR) to detect specific nucleotide sequence differences between the ABO alleles O1, O2, A1, A2, and B. PCR amplification using sequence-specific primers and detection of amplification products by agarose gel electrophoresis is one of the fastest genotyping methods and is easy to handle. With our method we tested the A1,2BO1,2 genotypes of 300 randomly chosen persons out of a pool of platelet donors and found the results to be consistent with ABO glycosyltransferase phenotypes. We also identified a presumably new ABO allele, which may be the result of a crossing-over event between alleles O1 and A2.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood.v88.5.1852.1852