Loading…

Molecular evolution of the metazoan protein kinase C multigene family

Protein kinases C (PKCs) comprise closely related Ser/Thr kinases, ubiquitously present in animal tissues; they respond to second messengers, e.g., Ca2+ and/or diacylglycerol, to express their activities. Two PKCs have been sequenced from Geodia cydonium, a member of the lowest multicellular animals...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular evolution 1996-10, Vol.43 (4), p.374-383
Main Authors: Kruse, M, Gamulin, V, Cetkovic, H, Pancer, Z, Müller, I M, Müller, W E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Protein kinases C (PKCs) comprise closely related Ser/Thr kinases, ubiquitously present in animal tissues; they respond to second messengers, e.g., Ca2+ and/or diacylglycerol, to express their activities. Two PKCs have been sequenced from Geodia cydonium, a member of the lowest multicellular animals, the sponges (Porifera). One sponge G. cydonium PKC, GCPKC1, belongs to the "novel" (Ca2+-independent) PKC (nPKC) subfamily while the second one, GCPKC2, has the hallmarks of the "conventional" (Ca2+-dependent) PKC (cPKC) subfamily. The alignment of the Ser/Thr catalytic kinase domains, of the predicted aa sequences for these cDNAs with respective segments from previously reported sequences, revealed highest homology to PKCs from animals but also distant relationships to Ser/Thr kinases from protozoa, plants, and bacteria. However, a comparison of the complete structures of the sponge PKCs, which are-already-identical to those of nPKCs and cPKCs from higher metazoa, with the structures of protozoan, plant, and bacterial Ser/Thr kinases indicates that the metazoan PKCs have to be distinguished from the nonmetazoan enzymes. These data indicate that metazoan PKCs have a universal common ancestor which they share with the nonmetazoan Ser/Thr kinases with respect to the kinase domain, but they differ from them in overall structural composition.
ISSN:0022-2844
1432-1432
DOI:10.1007/BF02339011