Loading…

rTS gene expression is associated with altered cell sensitivity to thymidylate synthase inhibitors

rTS is a recently discovered gene, phylogenetically conserved and found to be expressed in a wide variety of cell lines. rTS has also been found to be overexpressed in two cell lines resistant to FU and to MTX. The MTX-resistant cell line was found to have a high degree of cross resistance to severa...

Full description

Saved in:
Bibliographic Details
Published in:Advances in enzyme regulation 1996, Vol.36, p.165-180
Main Authors: Dolnick, Bruce J., Black, Adrian R., Winkler, Patsy M., Schindler, Kim, Hsueh, Chung-Tsen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:rTS is a recently discovered gene, phylogenetically conserved and found to be expressed in a wide variety of cell lines. rTS has also been found to be overexpressed in two cell lines resistant to FU and to MTX. The MTX-resistant cell line was found to have a high degree of cross resistance to several TS inhibitors. An apparent paradox to this correlation of rTS overexpression and resistance to TS inhibitors is the observation that expression of transfected rTSα results in enhanced sensitivity of cells to the TS inhibitor prodrug TFT and a modest increase in resistance to FUdR. Since immunoprecipitation of TS leads to the co-immunoprecipitation of two proteins within the expected molecular weight range of the two rTS proteins, it may be that both proteins bind to TS in vivo and modify its activity. Preliminary data substantiate this conclusion. It is conceivable that the ratio of the two rTS proteins associated with TS in vivo may differentially alter TS activity depending upon their stoichiometry or possibly posttranslational modification. Thus it may be possible for rTS to confer greater sensitivity to one pyrimidine analog (e.g., TFT) which is a product analog but to increase resistance or have a minor effect on a substrate analog (e.g., FdUMP) by stabilizing different conformations of TS. The structure of the rTS proteins suggests they are expected to have catalytic activity which involves proton abstraction from an α-carbon of a carboxyl group. Whether this enzyme activity is functional and related to pyrimidine metabolism awaits futher study.
ISSN:0065-2571
1873-2437
DOI:10.1016/0065-2571(95)00009-7