Loading…

Cellular signalling as a target in cancer chemotherapy. Phospholipid analogues as inhibitors of mitogenic signal transduction

Mitogenic signalling mechanisms emerged as novel targets for tumor chemotherapy. Current strategies for pharmacological interventions are briefly discussed. Phospholipid analogues are treated in greater detail. It is shown here that this new class of antitumor agents acts as inhibitors of mitogenic...

Full description

Saved in:
Bibliographic Details
Published in:Advances in enzyme regulation 1996, Vol.36, p.385-407
Main Authors: Grunicke, Hans H., Maly, Karl, Überall, Florian, Schubert, Christian, Kindler, Elisabeth, Stekar, Juri, Brachwitz, Hans
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mitogenic signalling mechanisms emerged as novel targets for tumor chemotherapy. Current strategies for pharmacological interventions are briefly discussed. Phospholipid analogues are treated in greater detail. It is shown here that this new class of antitumor agents acts as inhibitors of mitogenic signal transduction. The common target of all phospholipid analogues studied so far is the phosphatidylinositol (PI)-specific phospholipase C (PLC). This results in an attenuated formation of inositol-1,4,5-trisphosphate (IP 3) and diacylglycerol (DAG). The reduction in IP 3-levels leads to a depressed release of Ca 2+ from internal stores, and the reduced formation of DAG interferes with the growth factor-induced activation of protein-kinase C (PKC). In addition to the effect on PI-specific PLC, most phospholipid analogues inhibit PKC directly by interacting with the regulatory domain of the enzyme. This effect, however, is not observed with all phospholipid analogues. Some potent growth inhibitory representatives from this group like hexadecylphosphoserine or hexadecylphosphonoserine do not affect PKC in cell-free extracts. It is concluded, therefore, that the direct inhibition of PKC is not required for the growth-inhibitory activity of these agents. The ability of phospholipid analogues to interact with PKC was also not found to be correlated to the occurrence of unwanted side effects. Phospholipid analogues have also been found to act as inhibitors of phospholipase D (PLD). However, in this case the correlation to the growth inhibitory potency of various phospholipid analogues was less clear, so that the contribution of the PLD inhibition to the growth inhibitory effect of these agents still remains to be established. The inhibition of the thrombin-induced rise in cytosolic free Ca 2+ by phospholipid analogues is reversible by washing the cells in phospholipid-free medium. These findings suggest that phospholipid analogues do not cause persistent membrane damage and may act as cytostatic rather than cytotoxic agents.
ISSN:0065-2571
1873-2437
DOI:10.1016/0065-2571(95)00015-1