Loading…

A key by which the toad's visual system gets access to the domain of prey

Searching for principles that allow toads to distinguish between prey and nonprey, we wondered how the toad's prey-catching activity measured as R differs in response to changes in significant configurational stimulus features. Elongated shapes moving worm-like in the direction of their longer...

Full description

Saved in:
Bibliographic Details
Published in:Physiology & behavior 1996-09, Vol.60 (3), p.877-887
Main Authors: Wachowitz, S., Ewert, J.-P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-6256f25dfbbc6c1eaf98ebe08631cbe747d850e4ed90a285d1b3ac512c0474153
cites cdi_FETCH-LOGICAL-c349t-6256f25dfbbc6c1eaf98ebe08631cbe747d850e4ed90a285d1b3ac512c0474153
container_end_page 887
container_issue 3
container_start_page 877
container_title Physiology & behavior
container_volume 60
creator Wachowitz, S.
Ewert, J.-P.
description Searching for principles that allow toads to distinguish between prey and nonprey, we wondered how the toad's prey-catching activity measured as R differs in response to changes in significant configurational stimulus features. Elongated shapes moving worm-like in the direction of their longer axes are preferred prey dummies; but a toad is not a worm detector, and a worm is not the unique prey-catching releaser. Considering the frequency distributions of R values, we show that the release of prey catching is in a specific manner sensitive to the relation between the extensions of an object parallel ( xl 1) and perpendicular ( xl 2) to its direction of movement. It is the xl 1, and xl 2 features-relating algorithm that provides the key (instruction) by which the toad's visual system gets access to the domain of potential prey in terms of configurational cues. This, within behaviorally relevant limits, largely invariant algorithm also holds for segmented stimuli. Further investigations show that this principle of object discrimination is not due to experimental procedures but emerges as a species-common property, of which different toad species take advantage in a species-specific manner. Neurobiological correlates are discussed.
doi_str_mv 10.1016/0031-9384(96)00070-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78445859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0031938496000704</els_id><sourcerecordid>16383833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6256f25dfbbc6c1eaf98ebe08631cbe747d850e4ed90a285d1b3ac512c0474153</originalsourceid><addsrcrecordid>eNqF0E1r3DAQBmBREpJN2n_QgA4hHwe3kiVZ8iUQQpsGAr200JuQpXFXib3eaLwb_O-j7S57TJmDGOaZQbyEfObsC2e8-sqY4EUtjLyqq2vGmGaF_EBm3GhRKKb_HJDZnhyTE8SnjJiQ4ogcmYzKSs7Iwy19hok2E32dRz-n4xzoOLhwiXQdceU6ihOO0NO_MCJ13gNiBv9cGHoXF3Ro6TLB9JEctq5D-LR7T8nv799-3f0oHn_eP9zdPhZeyHosqlJVbalC2zS-8hxcWxtogJlKcN-AljoYxUBCqJkrjQq8Ec4rXnomteRKnJKL7d1lGl5WgKPtI3roOreAYYVWGymVUfV_Ia-EySUylFvo04CYoLXLFHuXJsuZ3URtNznaTY623jQ5aivz2tnu_qrpIeyXdtnm-flu7tC7rk1u4SPuWam1kIpndrNlkENbR0gWfYSFhxAT-NGGIb7_jzeU_Jii</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16383833</pqid></control><display><type>article</type><title>A key by which the toad's visual system gets access to the domain of prey</title><source>ScienceDirect Freedom Collection</source><creator>Wachowitz, S. ; Ewert, J.-P.</creator><creatorcontrib>Wachowitz, S. ; Ewert, J.-P.</creatorcontrib><description>Searching for principles that allow toads to distinguish between prey and nonprey, we wondered how the toad's prey-catching activity measured as R differs in response to changes in significant configurational stimulus features. Elongated shapes moving worm-like in the direction of their longer axes are preferred prey dummies; but a toad is not a worm detector, and a worm is not the unique prey-catching releaser. Considering the frequency distributions of R values, we show that the release of prey catching is in a specific manner sensitive to the relation between the extensions of an object parallel ( xl 1) and perpendicular ( xl 2) to its direction of movement. It is the xl 1, and xl 2 features-relating algorithm that provides the key (instruction) by which the toad's visual system gets access to the domain of potential prey in terms of configurational cues. This, within behaviorally relevant limits, largely invariant algorithm also holds for segmented stimuli. Further investigations show that this principle of object discrimination is not due to experimental procedures but emerges as a species-common property, of which different toad species take advantage in a species-specific manner. Neurobiological correlates are discussed.</description><identifier>ISSN: 0031-9384</identifier><identifier>EISSN: 1873-507X</identifier><identifier>DOI: 10.1016/0031-9384(96)00070-4</identifier><identifier>PMID: 8873264</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Anatomical correlates of behavior ; Animals ; Behavior, Animal - physiology ; Behavioral psychophysiology ; Biological and medical sciences ; Bufo bufo ; Bufonidae ; Configurational cues ; Discrimination (Psychology) - physiology ; Feature analysis ; Female ; Fundamental and applied biological sciences. Psychology ; Key stimulus concept ; Male ; Photic Stimulation ; Prey catching ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Space life sciences ; Toad ; Vision ; Visual Perception - physiology</subject><ispartof>Physiology &amp; behavior, 1996-09, Vol.60 (3), p.877-887</ispartof><rights>1996</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6256f25dfbbc6c1eaf98ebe08631cbe747d850e4ed90a285d1b3ac512c0474153</citedby><cites>FETCH-LOGICAL-c349t-6256f25dfbbc6c1eaf98ebe08631cbe747d850e4ed90a285d1b3ac512c0474153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2773451$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8873264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wachowitz, S.</creatorcontrib><creatorcontrib>Ewert, J.-P.</creatorcontrib><title>A key by which the toad's visual system gets access to the domain of prey</title><title>Physiology &amp; behavior</title><addtitle>Physiol Behav</addtitle><description>Searching for principles that allow toads to distinguish between prey and nonprey, we wondered how the toad's prey-catching activity measured as R differs in response to changes in significant configurational stimulus features. Elongated shapes moving worm-like in the direction of their longer axes are preferred prey dummies; but a toad is not a worm detector, and a worm is not the unique prey-catching releaser. Considering the frequency distributions of R values, we show that the release of prey catching is in a specific manner sensitive to the relation between the extensions of an object parallel ( xl 1) and perpendicular ( xl 2) to its direction of movement. It is the xl 1, and xl 2 features-relating algorithm that provides the key (instruction) by which the toad's visual system gets access to the domain of potential prey in terms of configurational cues. This, within behaviorally relevant limits, largely invariant algorithm also holds for segmented stimuli. Further investigations show that this principle of object discrimination is not due to experimental procedures but emerges as a species-common property, of which different toad species take advantage in a species-specific manner. Neurobiological correlates are discussed.</description><subject>Anatomical correlates of behavior</subject><subject>Animals</subject><subject>Behavior, Animal - physiology</subject><subject>Behavioral psychophysiology</subject><subject>Biological and medical sciences</subject><subject>Bufo bufo</subject><subject>Bufonidae</subject><subject>Configurational cues</subject><subject>Discrimination (Psychology) - physiology</subject><subject>Feature analysis</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Key stimulus concept</subject><subject>Male</subject><subject>Photic Stimulation</subject><subject>Prey catching</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Space life sciences</subject><subject>Toad</subject><subject>Vision</subject><subject>Visual Perception - physiology</subject><issn>0031-9384</issn><issn>1873-507X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqF0E1r3DAQBmBREpJN2n_QgA4hHwe3kiVZ8iUQQpsGAr200JuQpXFXib3eaLwb_O-j7S57TJmDGOaZQbyEfObsC2e8-sqY4EUtjLyqq2vGmGaF_EBm3GhRKKb_HJDZnhyTE8SnjJiQ4ogcmYzKSs7Iwy19hok2E32dRz-n4xzoOLhwiXQdceU6ihOO0NO_MCJ13gNiBv9cGHoXF3Ro6TLB9JEctq5D-LR7T8nv799-3f0oHn_eP9zdPhZeyHosqlJVbalC2zS-8hxcWxtogJlKcN-AljoYxUBCqJkrjQq8Ec4rXnomteRKnJKL7d1lGl5WgKPtI3roOreAYYVWGymVUfV_Ia-EySUylFvo04CYoLXLFHuXJsuZ3URtNznaTY623jQ5aivz2tnu_qrpIeyXdtnm-flu7tC7rk1u4SPuWam1kIpndrNlkENbR0gWfYSFhxAT-NGGIb7_jzeU_Jii</recordid><startdate>19960901</startdate><enddate>19960901</enddate><creator>Wachowitz, S.</creator><creator>Ewert, J.-P.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>19960901</creationdate><title>A key by which the toad's visual system gets access to the domain of prey</title><author>Wachowitz, S. ; Ewert, J.-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6256f25dfbbc6c1eaf98ebe08631cbe747d850e4ed90a285d1b3ac512c0474153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Anatomical correlates of behavior</topic><topic>Animals</topic><topic>Behavior, Animal - physiology</topic><topic>Behavioral psychophysiology</topic><topic>Biological and medical sciences</topic><topic>Bufo bufo</topic><topic>Bufonidae</topic><topic>Configurational cues</topic><topic>Discrimination (Psychology) - physiology</topic><topic>Feature analysis</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Key stimulus concept</topic><topic>Male</topic><topic>Photic Stimulation</topic><topic>Prey catching</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Space life sciences</topic><topic>Toad</topic><topic>Vision</topic><topic>Visual Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wachowitz, S.</creatorcontrib><creatorcontrib>Ewert, J.-P.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Physiology &amp; behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wachowitz, S.</au><au>Ewert, J.-P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A key by which the toad's visual system gets access to the domain of prey</atitle><jtitle>Physiology &amp; behavior</jtitle><addtitle>Physiol Behav</addtitle><date>1996-09-01</date><risdate>1996</risdate><volume>60</volume><issue>3</issue><spage>877</spage><epage>887</epage><pages>877-887</pages><issn>0031-9384</issn><eissn>1873-507X</eissn><abstract>Searching for principles that allow toads to distinguish between prey and nonprey, we wondered how the toad's prey-catching activity measured as R differs in response to changes in significant configurational stimulus features. Elongated shapes moving worm-like in the direction of their longer axes are preferred prey dummies; but a toad is not a worm detector, and a worm is not the unique prey-catching releaser. Considering the frequency distributions of R values, we show that the release of prey catching is in a specific manner sensitive to the relation between the extensions of an object parallel ( xl 1) and perpendicular ( xl 2) to its direction of movement. It is the xl 1, and xl 2 features-relating algorithm that provides the key (instruction) by which the toad's visual system gets access to the domain of potential prey in terms of configurational cues. This, within behaviorally relevant limits, largely invariant algorithm also holds for segmented stimuli. Further investigations show that this principle of object discrimination is not due to experimental procedures but emerges as a species-common property, of which different toad species take advantage in a species-specific manner. Neurobiological correlates are discussed.</abstract><cop>Cambridge</cop><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>8873264</pmid><doi>10.1016/0031-9384(96)00070-4</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9384
ispartof Physiology & behavior, 1996-09, Vol.60 (3), p.877-887
issn 0031-9384
1873-507X
language eng
recordid cdi_proquest_miscellaneous_78445859
source ScienceDirect Freedom Collection
subjects Anatomical correlates of behavior
Animals
Behavior, Animal - physiology
Behavioral psychophysiology
Biological and medical sciences
Bufo bufo
Bufonidae
Configurational cues
Discrimination (Psychology) - physiology
Feature analysis
Female
Fundamental and applied biological sciences. Psychology
Key stimulus concept
Male
Photic Stimulation
Prey catching
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Space life sciences
Toad
Vision
Visual Perception - physiology
title A key by which the toad's visual system gets access to the domain of prey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20key%20by%20which%20the%20toad's%20visual%20system%20gets%20access%20to%20the%20domain%20of%20prey&rft.jtitle=Physiology%20&%20behavior&rft.au=Wachowitz,%20S.&rft.date=1996-09-01&rft.volume=60&rft.issue=3&rft.spage=877&rft.epage=887&rft.pages=877-887&rft.issn=0031-9384&rft.eissn=1873-507X&rft_id=info:doi/10.1016/0031-9384(96)00070-4&rft_dat=%3Cproquest_cross%3E16383833%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-6256f25dfbbc6c1eaf98ebe08631cbe747d850e4ed90a285d1b3ac512c0474153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16383833&rft_id=info:pmid/8873264&rfr_iscdi=true