Loading…

Degradation of Distinct Assembly Forms of Immunoglobulin M Occurs in Multiple Sites in Permeabilized B Cells

Protein degradation is essential for quality control which retains and eliminates abnormal, unfolded, or partially assembled subunits of oligomeric proteins. The localization of this nonlysosomal pre-Golgi degradation to the endoplasmic reticulum (ER) has been mostly deduced from kinetic studies and...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1996-11, Vol.271 (44), p.27645-27651
Main Authors: Winitz, Dorit, Shachar, Idit, Elkabetz, Yechiel, Amitay, Raya, Samuelov, Meirav, Bar-Nun, Shoshana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Protein degradation is essential for quality control which retains and eliminates abnormal, unfolded, or partially assembled subunits of oligomeric proteins. The localization of this nonlysosomal pre-Golgi degradation to the endoplasmic reticulum (ER) has been mostly deduced from kinetic studies and carbohydrate analyses, while direct evidence for degradation within the ER has been provided by in vitro reconstitution of this process. In this article, we took advantage of the transport incompetence of permeabilized cells to directly demonstrate that the selective degradation of secretory IgM (sIgM) in B lymphocytes is transport-dependent. We show that, upon permeabilization of the plasma membrane with either streptolysin O or digitonin, sIgM is not degraded unless transport is allowed. Nevertheless, upon complete reduction of interchain disulfide bonds with thiols, the free µ heavy chains are degraded by a transport-independent quality control mechanism within the ER. This latter degradation is nonselective to the secretory heavy chain µs, and the membrane heavy chain µm, which is normally displayed on the surface of the B cell, is also eliminated. Moreover, the degradation of free µs is no longer restricted to B lymphocytes, and it takes place also in the ER of plasma cells which normally secrete polymers of sIgM. Conversely, when assembled with the light chain, the degradation is selective to sIgM, is restricted to B lymphocytes, and is a transport-dependent post-ER event.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.271.44.27645