Loading…
Re-Entrant Activity and Its Control in a Model of Mammalian Ventricular Tissue
We characterize the meander of re-entrant excitation in a model of a sheet of mammalian ventricular tissue, and its control by resonant drift under feedback driven stimulation. The Oxsoft equations for excitability in a guinea pig single ventricular cell were incorporated in a two dimensional reacti...
Saved in:
Published in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 1996-10, Vol.263 (1375), p.1373-1382 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We characterize the meander of re-entrant excitation in a model of a sheet of mammalian ventricular tissue, and its control by resonant drift under feedback driven stimulation. The Oxsoft equations for excitability in a guinea pig single ventricular cell were incorporated in a two dimensional reaction-diffusion system to model homogeneous, isotropic tissue with a plane wave conduction velocity of 0.35 m s-1. Re-entrant spiral wave solutions have a spatially extended transient motion (linear core) that settles down into rotation with an irregular period of 100-110 ms around an irregular, multi-lobed spiky core. In anisotropic tissue this would appear as a linear conduction block. The typical velocity of drift of the spiral wave induced by low amplitude resonant forcing is 0.4 cm s-1. |
---|---|
ISSN: | 0962-8452 1471-2954 |
DOI: | 10.1098/rspb.1996.0201 |