Loading…
Propagation on a central fiber surrounded by inactive fibers in a multifibered bundle model
We studied uniform propagation on a central active fiber surrounded by inactive fibers in a multifibered bundle model lying in a large volume conductor. The behavior of a fully active bundle is considered in a companion paper. The bundle is formed by concentric layers of small cylindrical fibers (ra...
Saved in:
Published in: | Annals of biomedical engineering 1996-11, Vol.24 (6), p.647-661 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We studied uniform propagation on a central active fiber surrounded by inactive fibers in a multifibered bundle model lying in a large volume conductor. The behavior of a fully active bundle is considered in a companion paper. The bundle is formed by concentric layers of small cylindrical fibers (radius 5 microns), with a uniform minimum distance (d) between any two adjacent fibers, to yield a bundle radius of about 72 microns. Individual fibers are identical continuous cables of excitable membrane based on a modified Beeler-Reuter model. The intracellular volume fraction (fi) increases to a maximum of about 90% as d is reduced and remains unchanged for d < 0.01 micron. In the range of d < 0.01 micron, the central fiber is effectively shielded from external effects by the first concentric layer of inactive fibers, and a large capacitive load current flows across the surrounding inactive membranes. In addition, the fiber proximity produces a circumferentially nonuniform current density (proximity effect) that is equivalent to an increased average longitudinal interstitial resistance. The conduction velocity is reduced as d becomes smaller in the range of d < 0.1 micron, the interstitial potential becomes larger, and both the maximum rate of rise and time constant of the foot of the upstroke are increased. On the other hand, for d > 0.1 micron, there are negligible changes in the shape of the upstroke, and the behavior of the central fiber is close to that of a uniform cable in a restricted volume conductor. For d larger than about 1.2 microns, the active fiber environment is close to an unbounded isotropic volume conductor. |
---|---|
ISSN: | 0090-6964 1573-9686 |
DOI: | 10.1007/BF02684178 |