Loading…

Conditionally immortalized neural progenitor cell lines integrate and differentiate after grafting to the adult rat striatum. A combined autoradiographic and electron microscopic study

Neural progenitor cell lines, generated by conditional immortalization from the embryonic CNS, have previously been shown to survive and integrate after transplantation to the adult brain. The present study was designed to investigate the in vivo differentiation and morphological features of grafted...

Full description

Saved in:
Bibliographic Details
Published in:Brain research 1996-10, Vol.737 (1), p.295-300
Main Authors: Lundberg, C, Field, P.M, Ajayi, Y.O, Raisman, G, Björklund, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neural progenitor cell lines, generated by conditional immortalization from the embryonic CNS, have previously been shown to survive and integrate after transplantation to the adult brain. The present study was designed to investigate the in vivo differentiation and morphological features of grafted neural progenitors using combined autoradiography and transmission electron microscopy of two temperature-sensitive neural progenitor cell lines, HiB5 and ST14A, labeled with 3H-thymidine prior to grafting. Two weeks after transplantation to the striatum the cells were found dispersed over an area extending about 1.5 mm from the injection site. Labeled cells located within the myelinated fiber bundles of the internal capsule were closely associated with myelinated axons and presented profiles similar to oligodendrocytes, while most of the grafted cells in the grey matter had morphological features of astroglia. Some labeled cells occurred also in close association with small blood vessels, morphologically resembling host pericytes. The results show that the immortalized neural progenitors can differentiate into mature glial cells, including astrocytes, oligodendrocytes and pericytes, after implantation into the adult striatum. The ability of the cells to become fully integrated with the resident glial population suggests that they will be highly useful as vehicles for intracerebral transgene expression in ex vivo gene transfer.
ISSN:0006-8993
1872-6240
DOI:10.1016/0006-8993(96)00923-7