Loading…
Conditionally immortalized neural progenitor cell lines integrate and differentiate after grafting to the adult rat striatum. A combined autoradiographic and electron microscopic study
Neural progenitor cell lines, generated by conditional immortalization from the embryonic CNS, have previously been shown to survive and integrate after transplantation to the adult brain. The present study was designed to investigate the in vivo differentiation and morphological features of grafted...
Saved in:
Published in: | Brain research 1996-10, Vol.737 (1), p.295-300 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neural progenitor cell lines, generated by conditional immortalization from the embryonic CNS, have previously been shown to survive and integrate after transplantation to the adult brain. The present study was designed to investigate the in vivo differentiation and morphological features of grafted neural progenitors using combined autoradiography and transmission electron microscopy of two temperature-sensitive neural progenitor cell lines, HiB5 and ST14A, labeled with
3H-thymidine prior to grafting. Two weeks after transplantation to the striatum the cells were found dispersed over an area extending about 1.5 mm from the injection site. Labeled cells located within the myelinated fiber bundles of the internal capsule were closely associated with myelinated axons and presented profiles similar to oligodendrocytes, while most of the grafted cells in the grey matter had morphological features of astroglia. Some labeled cells occurred also in close association with small blood vessels, morphologically resembling host pericytes. The results show that the immortalized neural progenitors can differentiate into mature glial cells, including astrocytes, oligodendrocytes and pericytes, after implantation into the adult striatum. The ability of the cells to become fully integrated with the resident glial population suggests that they will be highly useful as vehicles for intracerebral transgene expression in ex vivo gene transfer. |
---|---|
ISSN: | 0006-8993 1872-6240 |
DOI: | 10.1016/0006-8993(96)00923-7 |