Loading…

A MATHEMATICAL MODEL FOR THE SPATIO-TEMPORAL DYNAMICS OF INTRINSIC PATHWAY OF BLOOD COAGULATION. II. RESULTS

This paper continues our study (see Part I) where we modeled the spatio-temporal dynamics of the intrinsic pathway of blood coagulation. Here, we analyzed this model and showed that it describes the threshold behavior of coagulation. When activation is subthreshold (which produces not more than 0.07...

Full description

Saved in:
Bibliographic Details
Published in:Thrombosis research 1996-12, Vol.84 (5), p.333-344
Main Authors: Zarnitsina, V.I., Pokhilko, A.V., Ataullakhanov, F.I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c275t-853b07698a86ac81ca07870438a48797c75c374603730f0f962dc44799b0b0833
cites cdi_FETCH-LOGICAL-c275t-853b07698a86ac81ca07870438a48797c75c374603730f0f962dc44799b0b0833
container_end_page 344
container_issue 5
container_start_page 333
container_title Thrombosis research
container_volume 84
creator Zarnitsina, V.I.
Pokhilko, A.V.
Ataullakhanov, F.I.
description This paper continues our study (see Part I) where we modeled the spatio-temporal dynamics of the intrinsic pathway of blood coagulation. Here, we analyzed this model and showed that it describes the threshold behavior of coagulation. When activation is subthreshold (which produces not more than 0.07 nM factor Xla at saturating free calcium concentrations of 2 mM or higher), the concentration of generated thrombin remains below 0.01 nM. At the abovethreshold activation corresponding to factor Xla exceeding 0.07 nM, the concentration of thrombin explosively increases and then abruptly decreases. The peak concentration of thrombin reaches hundreds nM. With respect to free calcium concentration, the system also behaves in a threshold manner. For activation corresponding to 0.3 nM factor Xla, the threshold concentration of free calcium where the outburst of explosive thrombin generation occur is equal to 0.21 mM. The model simulations are in a good agreement with the experimentally recorded kinetics of thrombin generation at different concentrations of free calcium [1]. Analysis of the spatial dynamics of coagulation showed that if activation exceeded the threshold level at a certain point, the concentration wave of thrombin arises and propagates at a high speed from the activation zone. The parameters of this wave depends mainly on the efficiency of the feedback loops. The feedback loops through the backbone factors of the intrinsic pathway (autoactivation of factor X or activation of factor XI by thrombin) has a potential for the unlimited propagation of the thrombin wave. With increasing activity of activated protein C (the effect equivalent to that of thrombomodulin), oscillating regimes arise in the model. The first thrombin wave is followed by several secondary running waves. The amplitudes of secondary waves increases to the periphery of the clot consolidating its surface layer. Copyright © 1996 Elsevier Science Ltd
doi_str_mv 10.1016/S0049-3848(96)00197-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78584161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0049384896001971</els_id><sourcerecordid>78584161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-853b07698a86ac81ca07870438a48797c75c374603730f0f962dc44799b0b0833</originalsourceid><addsrcrecordid>eNqFUE1Lw0AQXUTRWv0Jwp5ED6mzzWY_ThLT1AbSrjQp4mlJt1uItFazreC_d9MWr15m4H3MYx5CNwR6BAh7KACoDEJBxZ1k9wBE8oCcoA4RXAZ9yvunqPMnuUCXzr17EScyOkfnQlIBDDpoFeNxXI5SP7IkzvFYDdIcD9UUexAXLx5WQZmOX9TUs4O3STzOkgKrIc4m5TSbFFmCvWj0Gr-14FOu1AAnKn6e5a110sNZ1sPTtJjlZXGFzpbVytnr4-6i2TAtk1GQq-c2PTB9Hm0DEYVz4EyKSrDKCGIq4IIDDUVF_XPc8MiEnDIIeQhLWErWXxhKuZRzmIMIwy66Pdz9bDZfO-u2el07Y1er6sNudk5zEQlKGPHC6CA0zca5xi71Z1Ovq-ZHE9Bty3rfsm4r1JLpfcu69d0cA3bztV38uY61ev7xwFv_5XdtG-1MbT-MXdSNNVu92NT_JPwCvFyA5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78584161</pqid></control><display><type>article</type><title>A MATHEMATICAL MODEL FOR THE SPATIO-TEMPORAL DYNAMICS OF INTRINSIC PATHWAY OF BLOOD COAGULATION. II. RESULTS</title><source>ScienceDirect Freedom Collection</source><creator>Zarnitsina, V.I. ; Pokhilko, A.V. ; Ataullakhanov, F.I.</creator><creatorcontrib>Zarnitsina, V.I. ; Pokhilko, A.V. ; Ataullakhanov, F.I.</creatorcontrib><description>This paper continues our study (see Part I) where we modeled the spatio-temporal dynamics of the intrinsic pathway of blood coagulation. Here, we analyzed this model and showed that it describes the threshold behavior of coagulation. When activation is subthreshold (which produces not more than 0.07 nM factor Xla at saturating free calcium concentrations of 2 mM or higher), the concentration of generated thrombin remains below 0.01 nM. At the abovethreshold activation corresponding to factor Xla exceeding 0.07 nM, the concentration of thrombin explosively increases and then abruptly decreases. The peak concentration of thrombin reaches hundreds nM. With respect to free calcium concentration, the system also behaves in a threshold manner. For activation corresponding to 0.3 nM factor Xla, the threshold concentration of free calcium where the outburst of explosive thrombin generation occur is equal to 0.21 mM. The model simulations are in a good agreement with the experimentally recorded kinetics of thrombin generation at different concentrations of free calcium [1]. Analysis of the spatial dynamics of coagulation showed that if activation exceeded the threshold level at a certain point, the concentration wave of thrombin arises and propagates at a high speed from the activation zone. The parameters of this wave depends mainly on the efficiency of the feedback loops. The feedback loops through the backbone factors of the intrinsic pathway (autoactivation of factor X or activation of factor XI by thrombin) has a potential for the unlimited propagation of the thrombin wave. With increasing activity of activated protein C (the effect equivalent to that of thrombomodulin), oscillating regimes arise in the model. The first thrombin wave is followed by several secondary running waves. The amplitudes of secondary waves increases to the periphery of the clot consolidating its surface layer. Copyright © 1996 Elsevier Science Ltd</description><identifier>ISSN: 0049-3848</identifier><identifier>EISSN: 1879-2472</identifier><identifier>DOI: 10.1016/S0049-3848(96)00197-1</identifier><identifier>PMID: 8948060</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Blood Coagulation ; Calcium - metabolism ; Factor IXa - metabolism ; Factor Xa - metabolism ; Factor XIa - metabolism ; Humans ; intrinsic pathway ; Kinetics ; mathematical model ; Models, Biological ; Models, Theoretical ; Protein C - metabolism ; spatial dynamics ; thrombin ; Thrombin - metabolism</subject><ispartof>Thrombosis research, 1996-12, Vol.84 (5), p.333-344</ispartof><rights>1996 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-853b07698a86ac81ca07870438a48797c75c374603730f0f962dc44799b0b0833</citedby><cites>FETCH-LOGICAL-c275t-853b07698a86ac81ca07870438a48797c75c374603730f0f962dc44799b0b0833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8948060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zarnitsina, V.I.</creatorcontrib><creatorcontrib>Pokhilko, A.V.</creatorcontrib><creatorcontrib>Ataullakhanov, F.I.</creatorcontrib><title>A MATHEMATICAL MODEL FOR THE SPATIO-TEMPORAL DYNAMICS OF INTRINSIC PATHWAY OF BLOOD COAGULATION. II. RESULTS</title><title>Thrombosis research</title><addtitle>Thromb Res</addtitle><description>This paper continues our study (see Part I) where we modeled the spatio-temporal dynamics of the intrinsic pathway of blood coagulation. Here, we analyzed this model and showed that it describes the threshold behavior of coagulation. When activation is subthreshold (which produces not more than 0.07 nM factor Xla at saturating free calcium concentrations of 2 mM or higher), the concentration of generated thrombin remains below 0.01 nM. At the abovethreshold activation corresponding to factor Xla exceeding 0.07 nM, the concentration of thrombin explosively increases and then abruptly decreases. The peak concentration of thrombin reaches hundreds nM. With respect to free calcium concentration, the system also behaves in a threshold manner. For activation corresponding to 0.3 nM factor Xla, the threshold concentration of free calcium where the outburst of explosive thrombin generation occur is equal to 0.21 mM. The model simulations are in a good agreement with the experimentally recorded kinetics of thrombin generation at different concentrations of free calcium [1]. Analysis of the spatial dynamics of coagulation showed that if activation exceeded the threshold level at a certain point, the concentration wave of thrombin arises and propagates at a high speed from the activation zone. The parameters of this wave depends mainly on the efficiency of the feedback loops. The feedback loops through the backbone factors of the intrinsic pathway (autoactivation of factor X or activation of factor XI by thrombin) has a potential for the unlimited propagation of the thrombin wave. With increasing activity of activated protein C (the effect equivalent to that of thrombomodulin), oscillating regimes arise in the model. The first thrombin wave is followed by several secondary running waves. The amplitudes of secondary waves increases to the periphery of the clot consolidating its surface layer. Copyright © 1996 Elsevier Science Ltd</description><subject>Blood Coagulation</subject><subject>Calcium - metabolism</subject><subject>Factor IXa - metabolism</subject><subject>Factor Xa - metabolism</subject><subject>Factor XIa - metabolism</subject><subject>Humans</subject><subject>intrinsic pathway</subject><subject>Kinetics</subject><subject>mathematical model</subject><subject>Models, Biological</subject><subject>Models, Theoretical</subject><subject>Protein C - metabolism</subject><subject>spatial dynamics</subject><subject>thrombin</subject><subject>Thrombin - metabolism</subject><issn>0049-3848</issn><issn>1879-2472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFUE1Lw0AQXUTRWv0Jwp5ED6mzzWY_ThLT1AbSrjQp4mlJt1uItFazreC_d9MWr15m4H3MYx5CNwR6BAh7KACoDEJBxZ1k9wBE8oCcoA4RXAZ9yvunqPMnuUCXzr17EScyOkfnQlIBDDpoFeNxXI5SP7IkzvFYDdIcD9UUexAXLx5WQZmOX9TUs4O3STzOkgKrIc4m5TSbFFmCvWj0Gr-14FOu1AAnKn6e5a110sNZ1sPTtJjlZXGFzpbVytnr4-6i2TAtk1GQq-c2PTB9Hm0DEYVz4EyKSrDKCGIq4IIDDUVF_XPc8MiEnDIIeQhLWErWXxhKuZRzmIMIwy66Pdz9bDZfO-u2el07Y1er6sNudk5zEQlKGPHC6CA0zca5xi71Z1Ovq-ZHE9Bty3rfsm4r1JLpfcu69d0cA3bztV38uY61ev7xwFv_5XdtG-1MbT-MXdSNNVu92NT_JPwCvFyA5Q</recordid><startdate>19961201</startdate><enddate>19961201</enddate><creator>Zarnitsina, V.I.</creator><creator>Pokhilko, A.V.</creator><creator>Ataullakhanov, F.I.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19961201</creationdate><title>A MATHEMATICAL MODEL FOR THE SPATIO-TEMPORAL DYNAMICS OF INTRINSIC PATHWAY OF BLOOD COAGULATION. II. RESULTS</title><author>Zarnitsina, V.I. ; Pokhilko, A.V. ; Ataullakhanov, F.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-853b07698a86ac81ca07870438a48797c75c374603730f0f962dc44799b0b0833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Blood Coagulation</topic><topic>Calcium - metabolism</topic><topic>Factor IXa - metabolism</topic><topic>Factor Xa - metabolism</topic><topic>Factor XIa - metabolism</topic><topic>Humans</topic><topic>intrinsic pathway</topic><topic>Kinetics</topic><topic>mathematical model</topic><topic>Models, Biological</topic><topic>Models, Theoretical</topic><topic>Protein C - metabolism</topic><topic>spatial dynamics</topic><topic>thrombin</topic><topic>Thrombin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zarnitsina, V.I.</creatorcontrib><creatorcontrib>Pokhilko, A.V.</creatorcontrib><creatorcontrib>Ataullakhanov, F.I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Thrombosis research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zarnitsina, V.I.</au><au>Pokhilko, A.V.</au><au>Ataullakhanov, F.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A MATHEMATICAL MODEL FOR THE SPATIO-TEMPORAL DYNAMICS OF INTRINSIC PATHWAY OF BLOOD COAGULATION. II. RESULTS</atitle><jtitle>Thrombosis research</jtitle><addtitle>Thromb Res</addtitle><date>1996-12-01</date><risdate>1996</risdate><volume>84</volume><issue>5</issue><spage>333</spage><epage>344</epage><pages>333-344</pages><issn>0049-3848</issn><eissn>1879-2472</eissn><abstract>This paper continues our study (see Part I) where we modeled the spatio-temporal dynamics of the intrinsic pathway of blood coagulation. Here, we analyzed this model and showed that it describes the threshold behavior of coagulation. When activation is subthreshold (which produces not more than 0.07 nM factor Xla at saturating free calcium concentrations of 2 mM or higher), the concentration of generated thrombin remains below 0.01 nM. At the abovethreshold activation corresponding to factor Xla exceeding 0.07 nM, the concentration of thrombin explosively increases and then abruptly decreases. The peak concentration of thrombin reaches hundreds nM. With respect to free calcium concentration, the system also behaves in a threshold manner. For activation corresponding to 0.3 nM factor Xla, the threshold concentration of free calcium where the outburst of explosive thrombin generation occur is equal to 0.21 mM. The model simulations are in a good agreement with the experimentally recorded kinetics of thrombin generation at different concentrations of free calcium [1]. Analysis of the spatial dynamics of coagulation showed that if activation exceeded the threshold level at a certain point, the concentration wave of thrombin arises and propagates at a high speed from the activation zone. The parameters of this wave depends mainly on the efficiency of the feedback loops. The feedback loops through the backbone factors of the intrinsic pathway (autoactivation of factor X or activation of factor XI by thrombin) has a potential for the unlimited propagation of the thrombin wave. With increasing activity of activated protein C (the effect equivalent to that of thrombomodulin), oscillating regimes arise in the model. The first thrombin wave is followed by several secondary running waves. The amplitudes of secondary waves increases to the periphery of the clot consolidating its surface layer. Copyright © 1996 Elsevier Science Ltd</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>8948060</pmid><doi>10.1016/S0049-3848(96)00197-1</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0049-3848
ispartof Thrombosis research, 1996-12, Vol.84 (5), p.333-344
issn 0049-3848
1879-2472
language eng
recordid cdi_proquest_miscellaneous_78584161
source ScienceDirect Freedom Collection
subjects Blood Coagulation
Calcium - metabolism
Factor IXa - metabolism
Factor Xa - metabolism
Factor XIa - metabolism
Humans
intrinsic pathway
Kinetics
mathematical model
Models, Biological
Models, Theoretical
Protein C - metabolism
spatial dynamics
thrombin
Thrombin - metabolism
title A MATHEMATICAL MODEL FOR THE SPATIO-TEMPORAL DYNAMICS OF INTRINSIC PATHWAY OF BLOOD COAGULATION. II. RESULTS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20MATHEMATICAL%20MODEL%20FOR%20THE%20SPATIO-TEMPORAL%20DYNAMICS%20OF%20INTRINSIC%20PATHWAY%20OF%20BLOOD%20COAGULATION.%20II.%20RESULTS&rft.jtitle=Thrombosis%20research&rft.au=Zarnitsina,%20V.I.&rft.date=1996-12-01&rft.volume=84&rft.issue=5&rft.spage=333&rft.epage=344&rft.pages=333-344&rft.issn=0049-3848&rft.eissn=1879-2472&rft_id=info:doi/10.1016/S0049-3848(96)00197-1&rft_dat=%3Cproquest_cross%3E78584161%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c275t-853b07698a86ac81ca07870438a48797c75c374603730f0f962dc44799b0b0833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=78584161&rft_id=info:pmid/8948060&rfr_iscdi=true