Loading…
Biomedical Applications of Polyurethanes: Implications of Failure Mechanisms
Three mechanisms have been described which explain various observed interactions between polyurethane chemistry and body chemistry. These include calcification, environmental stress cracking, and chain scission. Each may result in implant device failure, and each appears to involve metal ion complex...
Saved in:
Published in: | Journal of biomaterials applications 1988, Vol.3 (2), p.207-227 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Three mechanisms have been described which explain various observed interactions between polyurethane chemistry and body chemistry. These include calcification, environmental stress cracking, and chain scission. Each may result in implant device failure, and each appears to involve metal ion complexation as a key parameter. Continued expansion of polyurethane into implantable product applications will require further clarification of the effect of each of these interactions on long-term product performance. It is believed that design considerations and polymer modifications will help control the effects of each of the interactions and will result in new and improved polyurethane implant products. |
---|---|
ISSN: | 0885-3282 1530-8022 |
DOI: | 10.1177/088532828800300204 |