Loading…

The Acer gene of Drosophila codes for an angiotensin-converting enzyme homologue

Mammalian angiotensin-converting enzyme (ACE) exists as two forms, somatic (sACE), controlling blood pressure via angiotensin II, and testicular (tACE), whose function is unknown. The former has two highly homologous N- and C-terminal Zn 2+ metallopeptidase active sites, whereas the latter only has...

Full description

Saved in:
Bibliographic Details
Published in:Gene 1996-11, Vol.181 (1), p.191-197
Main Authors: Taylor, Christine A.M., Coates, David, Shirras, Alan D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mammalian angiotensin-converting enzyme (ACE) exists as two forms, somatic (sACE), controlling blood pressure via angiotensin II, and testicular (tACE), whose function is unknown. The former has two highly homologous N- and C-terminal Zn 2+ metallopeptidase active sites, whereas the latter only has one, which is identical to the C-terminal domain of sACE. We have sequenced 2452 bases of a 3.1-kb mRNA whose predicted translation product shows 40% identity with mammalian testicular ACE, and 48% identity with an already identified Drosophila homologue of ACE (Ance). We have termed this gene Acer (Angiotensin converting enzyme-related). Acer mRNA is found in the developing dorsal vessel (heart) during embryogenesis. Phylogenetic analysis indicates that duplication of an ancestral ACE gene occurred in the lineage leading to the arthropods, independently of the duplication which gave rise to the two domain somatic ACE of mammals.
ISSN:0378-1119
1879-0038
DOI:10.1016/S0378-1119(96)00503-3