Loading…
The panpositionable panconnectedness of augmented cubes
A graph G is panconnected if, for any two distinct vertices x and y of G, it contains an [ x, y]-path of length l for each integer l satisfying d G ( x, y) ⩽ l ⩽ ∣ V( G)∣ − 1, where d G ( x, y) denotes the distance between vertices x and y in G, and V( G) denotes the vertex set of G. For insight int...
Saved in:
Published in: | Information sciences 2010-10, Vol.180 (19), p.3781-3793 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c329t-53f67537b795b1e9a36bf204ecabe1b164fe971dbe0f0edac7ad73cda28c363c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c329t-53f67537b795b1e9a36bf204ecabe1b164fe971dbe0f0edac7ad73cda28c363c3 |
container_end_page | 3793 |
container_issue | 19 |
container_start_page | 3781 |
container_title | Information sciences |
container_volume | 180 |
creator | Kung, Tzu-Liang Teng, Yuan-Hsiang Hsu, Lih-Hsing |
description | A graph
G is panconnected if, for any two distinct vertices
x and
y of
G, it contains an [
x,
y]-path of length
l for each integer
l satisfying
d
G
(
x,
y)
⩽
l
⩽
∣
V(
G)∣
−
1, where
d
G
(
x,
y) denotes the distance between vertices
x and
y in
G, and
V(
G) denotes the vertex set of
G. For insight into the concept of panconnectedness, we propose a more refined property, namely panpositionable panconnectedness. Let
x,
y, and
z be any three distinct vertices in a graph
G. Then
G is said to be panpositionably panconnected if for any
d
G
(
x,
z)
⩽
l
1
⩽
∣
V(
G)∣
−
d
G
(
y,
z)
−
1, it contains a path
P such that
x is the beginning vertex of
P,
z is the (
l
1
+
1)th vertex of
P, and
y is the (
l
1
+
l
2
+
1)th vertex of
P for any integer
l
2 satisfying
d
G
(
y,
z)
⩽
l
2
⩽
∣
V(
G)∣
−
l
1
−
1. The augmented cube, proposed by Choudum and Sunitha
[6] to be an enhancement of the
n-cube
Q
n
, not only retains some attractive characteristics of
Q
n
but also possesses many distinguishing properties of which
Q
n
lacks. In this paper, we investigate the panpositionable panconnectedness with respect to the class of augmented cubes. As a consequence, many topological properties related to cycle and path embedding in augmented cubes, such as pancyclicity, panconnectedness, and panpositionable Hamiltonicity, can be drawn from our results. |
doi_str_mv | 10.1016/j.ins.2010.06.016 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787048810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002002551000277X</els_id><sourcerecordid>787048810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-53f67537b795b1e9a36bf204ecabe1b164fe971dbe0f0edac7ad73cda28c363c3</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AG-9eWp9SdqkxZMs_oMFL-s5JOmrZukmtWkFv71Z69nTY4aZB_Mj5JpCQYGK233hfCwYJA2iSM4JWdFaslywhp6SFQCDHFhVnZOLGPcAUEohVkTuPjAbtB9CdJMLXpv-V9vgPdoJW48xZqHL9Px-QJ-MzM4G4yU563Qf8ervrsnb48Nu85xvX59eNvfb3HLWTHnFOyErLo1sKkOx0VyYjkGJVhukhoqyw0bS1iB0gK22UreS21az2nLBLV-Tm-XvMIbPGeOkDi5a7HvtMcxRyVpCWdcUUpIuSTuGGEfs1DC6gx6_FQV1ZKT2KjFSR0YKhEpO6twtHUwTvhyOKlqH3mLrxrRetcH90_4BijNwHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787048810</pqid></control><display><type>article</type><title>The panpositionable panconnectedness of augmented cubes</title><source>Elsevier</source><creator>Kung, Tzu-Liang ; Teng, Yuan-Hsiang ; Hsu, Lih-Hsing</creator><creatorcontrib>Kung, Tzu-Liang ; Teng, Yuan-Hsiang ; Hsu, Lih-Hsing</creatorcontrib><description>A graph
G is panconnected if, for any two distinct vertices
x and
y of
G, it contains an [
x,
y]-path of length
l for each integer
l satisfying
d
G
(
x,
y)
⩽
l
⩽
∣
V(
G)∣
−
1, where
d
G
(
x,
y) denotes the distance between vertices
x and
y in
G, and
V(
G) denotes the vertex set of
G. For insight into the concept of panconnectedness, we propose a more refined property, namely panpositionable panconnectedness. Let
x,
y, and
z be any three distinct vertices in a graph
G. Then
G is said to be panpositionably panconnected if for any
d
G
(
x,
z)
⩽
l
1
⩽
∣
V(
G)∣
−
d
G
(
y,
z)
−
1, it contains a path
P such that
x is the beginning vertex of
P,
z is the (
l
1
+
1)th vertex of
P, and
y is the (
l
1
+
l
2
+
1)th vertex of
P for any integer
l
2 satisfying
d
G
(
y,
z)
⩽
l
2
⩽
∣
V(
G)∣
−
l
1
−
1. The augmented cube, proposed by Choudum and Sunitha
[6] to be an enhancement of the
n-cube
Q
n
, not only retains some attractive characteristics of
Q
n
but also possesses many distinguishing properties of which
Q
n
lacks. In this paper, we investigate the panpositionable panconnectedness with respect to the class of augmented cubes. As a consequence, many topological properties related to cycle and path embedding in augmented cubes, such as pancyclicity, panconnectedness, and panpositionable Hamiltonicity, can be drawn from our results.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2010.06.016</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Cubes ; Graphs ; Hamiltonian ; Integers ; Interconnection network ; Panconnected ; Pancyclic ; Path embedding</subject><ispartof>Information sciences, 2010-10, Vol.180 (19), p.3781-3793</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-53f67537b795b1e9a36bf204ecabe1b164fe971dbe0f0edac7ad73cda28c363c3</citedby><cites>FETCH-LOGICAL-c329t-53f67537b795b1e9a36bf204ecabe1b164fe971dbe0f0edac7ad73cda28c363c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kung, Tzu-Liang</creatorcontrib><creatorcontrib>Teng, Yuan-Hsiang</creatorcontrib><creatorcontrib>Hsu, Lih-Hsing</creatorcontrib><title>The panpositionable panconnectedness of augmented cubes</title><title>Information sciences</title><description>A graph
G is panconnected if, for any two distinct vertices
x and
y of
G, it contains an [
x,
y]-path of length
l for each integer
l satisfying
d
G
(
x,
y)
⩽
l
⩽
∣
V(
G)∣
−
1, where
d
G
(
x,
y) denotes the distance between vertices
x and
y in
G, and
V(
G) denotes the vertex set of
G. For insight into the concept of panconnectedness, we propose a more refined property, namely panpositionable panconnectedness. Let
x,
y, and
z be any three distinct vertices in a graph
G. Then
G is said to be panpositionably panconnected if for any
d
G
(
x,
z)
⩽
l
1
⩽
∣
V(
G)∣
−
d
G
(
y,
z)
−
1, it contains a path
P such that
x is the beginning vertex of
P,
z is the (
l
1
+
1)th vertex of
P, and
y is the (
l
1
+
l
2
+
1)th vertex of
P for any integer
l
2 satisfying
d
G
(
y,
z)
⩽
l
2
⩽
∣
V(
G)∣
−
l
1
−
1. The augmented cube, proposed by Choudum and Sunitha
[6] to be an enhancement of the
n-cube
Q
n
, not only retains some attractive characteristics of
Q
n
but also possesses many distinguishing properties of which
Q
n
lacks. In this paper, we investigate the panpositionable panconnectedness with respect to the class of augmented cubes. As a consequence, many topological properties related to cycle and path embedding in augmented cubes, such as pancyclicity, panconnectedness, and panpositionable Hamiltonicity, can be drawn from our results.</description><subject>Cubes</subject><subject>Graphs</subject><subject>Hamiltonian</subject><subject>Integers</subject><subject>Interconnection network</subject><subject>Panconnected</subject><subject>Pancyclic</subject><subject>Path embedding</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-AG-9eWp9SdqkxZMs_oMFL-s5JOmrZukmtWkFv71Z69nTY4aZB_Mj5JpCQYGK233hfCwYJA2iSM4JWdFaslywhp6SFQCDHFhVnZOLGPcAUEohVkTuPjAbtB9CdJMLXpv-V9vgPdoJW48xZqHL9Px-QJ-MzM4G4yU563Qf8ervrsnb48Nu85xvX59eNvfb3HLWTHnFOyErLo1sKkOx0VyYjkGJVhukhoqyw0bS1iB0gK22UreS21az2nLBLV-Tm-XvMIbPGeOkDi5a7HvtMcxRyVpCWdcUUpIuSTuGGEfs1DC6gx6_FQV1ZKT2KjFSR0YKhEpO6twtHUwTvhyOKlqH3mLrxrRetcH90_4BijNwHQ</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Kung, Tzu-Liang</creator><creator>Teng, Yuan-Hsiang</creator><creator>Hsu, Lih-Hsing</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101001</creationdate><title>The panpositionable panconnectedness of augmented cubes</title><author>Kung, Tzu-Liang ; Teng, Yuan-Hsiang ; Hsu, Lih-Hsing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-53f67537b795b1e9a36bf204ecabe1b164fe971dbe0f0edac7ad73cda28c363c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cubes</topic><topic>Graphs</topic><topic>Hamiltonian</topic><topic>Integers</topic><topic>Interconnection network</topic><topic>Panconnected</topic><topic>Pancyclic</topic><topic>Path embedding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kung, Tzu-Liang</creatorcontrib><creatorcontrib>Teng, Yuan-Hsiang</creatorcontrib><creatorcontrib>Hsu, Lih-Hsing</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kung, Tzu-Liang</au><au>Teng, Yuan-Hsiang</au><au>Hsu, Lih-Hsing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The panpositionable panconnectedness of augmented cubes</atitle><jtitle>Information sciences</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>180</volume><issue>19</issue><spage>3781</spage><epage>3793</epage><pages>3781-3793</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>A graph
G is panconnected if, for any two distinct vertices
x and
y of
G, it contains an [
x,
y]-path of length
l for each integer
l satisfying
d
G
(
x,
y)
⩽
l
⩽
∣
V(
G)∣
−
1, where
d
G
(
x,
y) denotes the distance between vertices
x and
y in
G, and
V(
G) denotes the vertex set of
G. For insight into the concept of panconnectedness, we propose a more refined property, namely panpositionable panconnectedness. Let
x,
y, and
z be any three distinct vertices in a graph
G. Then
G is said to be panpositionably panconnected if for any
d
G
(
x,
z)
⩽
l
1
⩽
∣
V(
G)∣
−
d
G
(
y,
z)
−
1, it contains a path
P such that
x is the beginning vertex of
P,
z is the (
l
1
+
1)th vertex of
P, and
y is the (
l
1
+
l
2
+
1)th vertex of
P for any integer
l
2 satisfying
d
G
(
y,
z)
⩽
l
2
⩽
∣
V(
G)∣
−
l
1
−
1. The augmented cube, proposed by Choudum and Sunitha
[6] to be an enhancement of the
n-cube
Q
n
, not only retains some attractive characteristics of
Q
n
but also possesses many distinguishing properties of which
Q
n
lacks. In this paper, we investigate the panpositionable panconnectedness with respect to the class of augmented cubes. As a consequence, many topological properties related to cycle and path embedding in augmented cubes, such as pancyclicity, panconnectedness, and panpositionable Hamiltonicity, can be drawn from our results.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2010.06.016</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0255 |
ispartof | Information sciences, 2010-10, Vol.180 (19), p.3781-3793 |
issn | 0020-0255 1872-6291 |
language | eng |
recordid | cdi_proquest_miscellaneous_787048810 |
source | Elsevier |
subjects | Cubes Graphs Hamiltonian Integers Interconnection network Panconnected Pancyclic Path embedding |
title | The panpositionable panconnectedness of augmented cubes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20panpositionable%20panconnectedness%20of%20augmented%20cubes&rft.jtitle=Information%20sciences&rft.au=Kung,%20Tzu-Liang&rft.date=2010-10-01&rft.volume=180&rft.issue=19&rft.spage=3781&rft.epage=3793&rft.pages=3781-3793&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2010.06.016&rft_dat=%3Cproquest_cross%3E787048810%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c329t-53f67537b795b1e9a36bf204ecabe1b164fe971dbe0f0edac7ad73cda28c363c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=787048810&rft_id=info:pmid/&rfr_iscdi=true |