Loading…

Laser Induced Breakdown Spectroscopy application for ash characterisation for a coal fired power plant

The aim of this work was to apply the LIBS technique for the analysis of fly ash and bottom ash resulting from the coal combustion in a coal fired power plant. The steps of presented LIBS analysis were pelletizing of powdered samples, firing with laser and spectroscopic detection. The analysis “on t...

Full description

Saved in:
Bibliographic Details
Published in:Spectrochimica acta. Part B: Atomic spectroscopy 2010-08, Vol.65 (8), p.734-737
Main Authors: Ctvrtnickova, T., Mateo, M.P., Yañez, A., Nicolas, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this work was to apply the LIBS technique for the analysis of fly ash and bottom ash resulting from the coal combustion in a coal fired power plant. The steps of presented LIBS analysis were pelletizing of powdered samples, firing with laser and spectroscopic detection. The analysis “on tape” was presented as an alternative fast sampling approach. This procedure was compared with the usual steps of normalized chemical analysis methods for coal which are coal calcination, fluxing in high temperature plasma, dilution in strong acids and analyzing by means of ICP-OES and/or AAS. First, the single pulse LIBS approach was used for determination and quantification of elemental content in fly ash and bottom ash on the exit of the boiler. For pellet preparation, ash has to be mixed with proper binder to assure the sample resistance. Preparation of the samples (binder selection and pressing/pelletizing conditions) was determined and LIBS experimental conditions optimized. No preparation is necessary in “on tape” sampling. Moreover, double-pulse approach in orthogonal reheating configuration was applied to enhance the repeatability and precision of the LIBS results and to surpass the matrix effect influencing the calibration curves in case of some elements. Obtained results showed that LIBS responses are comparable to the normalized analytical methods. Once optimized the experimental conditions and features, application of LIBS may be a promising technique for combustion process control even in on-line mode.
ISSN:0584-8547
1873-3565
DOI:10.1016/j.sab.2010.04.020