Loading…
Effective modulus of heterogeneous materials in thin film configurations
Thin film is one of the important geometric configurations in the microelectronic devices. The traditional theories for heterogeneous material are challenged for their application to the thin film configurations (the free-standing and substrate-attached thin films). In the present paper, a finite el...
Saved in:
Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2010-08, Vol.527 (21), p.5452-5461 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c362t-24a509422bd980446dbad393362541f39ffc28b6d40ada5272ab368eba35c61e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-24a509422bd980446dbad393362541f39ffc28b6d40ada5272ab368eba35c61e3 |
container_end_page | 5461 |
container_issue | 21 |
container_start_page | 5452 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 527 |
creator | Xie, X.M. Fan, H. |
description | Thin film is one of the important geometric configurations in the microelectronic devices. The traditional theories for heterogeneous material are challenged for their application to the thin film configurations (the free-standing and substrate-attached thin films). In the present paper, a finite element analysis with a statistic procedure is proposed to estimate the effective properties of thin films. For the free-standing thin film, the effective stiffness decreases as film thickness decreases. Comparison is made between numerical simulations and analytical solutions derived from a plane stress self-consistent scheme. For the substrate-attached thin film, the effective stiffness is affected by the relative stiffness of the substrate to the film. The numerical simulation shows the effective stiffness of the substrate-attached thin film can vary between the equivalent value of the free-standing thin film and Voigt bound. The three-dimensional Hashin–Shtrikman bounds fail to gauge the effective stiffness of thin film. |
doi_str_mv | 10.1016/j.msea.2010.05.028 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787049565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092150931000540X</els_id><sourcerecordid>787049565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-24a509422bd980446dbad393362541f39ffc28b6d40ada5272ab368eba35c61e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWB9_wNNexNPWyWsf4EVKtULBi55DNjtpU3Y3NdkW_Pemtnj0kiEz30wmHyF3FKYUaPG4mfYR9ZRBSoCcAqvOyIRWJc9FzYtzMoGa0VxCzS_JVYwbAKAC5IQs5taiGd0es963u24XM2-zNY4Y_AoH9CnR63RzuouZG7JxnQ7ruj4zfrButQt6dH6IN-TCJgRvT_GafL7MP2aLfPn--jZ7XuaGF2zMmdBpC8FY09YVCFG0jW55zVNRCmp5ba1hVVO0AnSrJSuZbnhRYaO5NAVFfk0ejnO3wX_tMI6qd9Fg1-nfZVVZlSBqWchEsiNpgo8xoFXb4HodvhUFdbCmNupgTR2sKZAqWUtN96fxOhrd2aAH4-JfJ-NQVkwcuKcjh-mve4dBReNwMNi6kHyq1rv_nvkBqNmDLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787049565</pqid></control><display><type>article</type><title>Effective modulus of heterogeneous materials in thin film configurations</title><source>ScienceDirect Journals</source><creator>Xie, X.M. ; Fan, H.</creator><creatorcontrib>Xie, X.M. ; Fan, H.</creatorcontrib><description>Thin film is one of the important geometric configurations in the microelectronic devices. The traditional theories for heterogeneous material are challenged for their application to the thin film configurations (the free-standing and substrate-attached thin films). In the present paper, a finite element analysis with a statistic procedure is proposed to estimate the effective properties of thin films. For the free-standing thin film, the effective stiffness decreases as film thickness decreases. Comparison is made between numerical simulations and analytical solutions derived from a plane stress self-consistent scheme. For the substrate-attached thin film, the effective stiffness is affected by the relative stiffness of the substrate to the film. The numerical simulation shows the effective stiffness of the substrate-attached thin film can vary between the equivalent value of the free-standing thin film and Voigt bound. The three-dimensional Hashin–Shtrikman bounds fail to gauge the effective stiffness of thin film.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2010.05.028</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Computer simulation ; Condensed matter: structure, mechanical and thermal properties ; Devices ; Effective stiffness ; Exact sciences and technology ; Finite element method ; Gages ; Heterogeneous material ; Materials science ; Mathematical analysis ; Mathematical models ; Mechanical and acoustical properties ; Physical properties of thin films, nonelectronic ; Physics ; Statistics ; Stiffness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film ; Thin films</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2010-08, Vol.527 (21), p.5452-5461</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-24a509422bd980446dbad393362541f39ffc28b6d40ada5272ab368eba35c61e3</citedby><cites>FETCH-LOGICAL-c362t-24a509422bd980446dbad393362541f39ffc28b6d40ada5272ab368eba35c61e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23078248$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, X.M.</creatorcontrib><creatorcontrib>Fan, H.</creatorcontrib><title>Effective modulus of heterogeneous materials in thin film configurations</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Thin film is one of the important geometric configurations in the microelectronic devices. The traditional theories for heterogeneous material are challenged for their application to the thin film configurations (the free-standing and substrate-attached thin films). In the present paper, a finite element analysis with a statistic procedure is proposed to estimate the effective properties of thin films. For the free-standing thin film, the effective stiffness decreases as film thickness decreases. Comparison is made between numerical simulations and analytical solutions derived from a plane stress self-consistent scheme. For the substrate-attached thin film, the effective stiffness is affected by the relative stiffness of the substrate to the film. The numerical simulation shows the effective stiffness of the substrate-attached thin film can vary between the equivalent value of the free-standing thin film and Voigt bound. The three-dimensional Hashin–Shtrikman bounds fail to gauge the effective stiffness of thin film.</description><subject>Computer simulation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Devices</subject><subject>Effective stiffness</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Gages</subject><subject>Heterogeneous material</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical and acoustical properties</subject><subject>Physical properties of thin films, nonelectronic</subject><subject>Physics</subject><subject>Statistics</subject><subject>Stiffness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film</subject><subject>Thin films</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWB9_wNNexNPWyWsf4EVKtULBi55DNjtpU3Y3NdkW_Pemtnj0kiEz30wmHyF3FKYUaPG4mfYR9ZRBSoCcAqvOyIRWJc9FzYtzMoGa0VxCzS_JVYwbAKAC5IQs5taiGd0es963u24XM2-zNY4Y_AoH9CnR63RzuouZG7JxnQ7ruj4zfrButQt6dH6IN-TCJgRvT_GafL7MP2aLfPn--jZ7XuaGF2zMmdBpC8FY09YVCFG0jW55zVNRCmp5ba1hVVO0AnSrJSuZbnhRYaO5NAVFfk0ejnO3wX_tMI6qd9Fg1-nfZVVZlSBqWchEsiNpgo8xoFXb4HodvhUFdbCmNupgTR2sKZAqWUtN96fxOhrd2aAH4-JfJ-NQVkwcuKcjh-mve4dBReNwMNi6kHyq1rv_nvkBqNmDLg</recordid><startdate>20100820</startdate><enddate>20100820</enddate><creator>Xie, X.M.</creator><creator>Fan, H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100820</creationdate><title>Effective modulus of heterogeneous materials in thin film configurations</title><author>Xie, X.M. ; Fan, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-24a509422bd980446dbad393362541f39ffc28b6d40ada5272ab368eba35c61e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer simulation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Devices</topic><topic>Effective stiffness</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Gages</topic><topic>Heterogeneous material</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical and acoustical properties</topic><topic>Physical properties of thin films, nonelectronic</topic><topic>Physics</topic><topic>Statistics</topic><topic>Stiffness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, X.M.</creatorcontrib><creatorcontrib>Fan, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, X.M.</au><au>Fan, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective modulus of heterogeneous materials in thin film configurations</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2010-08-20</date><risdate>2010</risdate><volume>527</volume><issue>21</issue><spage>5452</spage><epage>5461</epage><pages>5452-5461</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Thin film is one of the important geometric configurations in the microelectronic devices. The traditional theories for heterogeneous material are challenged for their application to the thin film configurations (the free-standing and substrate-attached thin films). In the present paper, a finite element analysis with a statistic procedure is proposed to estimate the effective properties of thin films. For the free-standing thin film, the effective stiffness decreases as film thickness decreases. Comparison is made between numerical simulations and analytical solutions derived from a plane stress self-consistent scheme. For the substrate-attached thin film, the effective stiffness is affected by the relative stiffness of the substrate to the film. The numerical simulation shows the effective stiffness of the substrate-attached thin film can vary between the equivalent value of the free-standing thin film and Voigt bound. The three-dimensional Hashin–Shtrikman bounds fail to gauge the effective stiffness of thin film.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2010.05.028</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2010-08, Vol.527 (21), p.5452-5461 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_787049565 |
source | ScienceDirect Journals |
subjects | Computer simulation Condensed matter: structure, mechanical and thermal properties Devices Effective stiffness Exact sciences and technology Finite element method Gages Heterogeneous material Materials science Mathematical analysis Mathematical models Mechanical and acoustical properties Physical properties of thin films, nonelectronic Physics Statistics Stiffness Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thin film Thin films |
title | Effective modulus of heterogeneous materials in thin film configurations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20modulus%20of%20heterogeneous%20materials%20in%20thin%20film%20configurations&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Xie,%20X.M.&rft.date=2010-08-20&rft.volume=527&rft.issue=21&rft.spage=5452&rft.epage=5461&rft.pages=5452-5461&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2010.05.028&rft_dat=%3Cproquest_cross%3E787049565%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-24a509422bd980446dbad393362541f39ffc28b6d40ada5272ab368eba35c61e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=787049565&rft_id=info:pmid/&rfr_iscdi=true |