Loading…

Effective modulus of heterogeneous materials in thin film configurations

Thin film is one of the important geometric configurations in the microelectronic devices. The traditional theories for heterogeneous material are challenged for their application to the thin film configurations (the free-standing and substrate-attached thin films). In the present paper, a finite el...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2010-08, Vol.527 (21), p.5452-5461
Main Authors: Xie, X.M., Fan, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-24a509422bd980446dbad393362541f39ffc28b6d40ada5272ab368eba35c61e3
cites cdi_FETCH-LOGICAL-c362t-24a509422bd980446dbad393362541f39ffc28b6d40ada5272ab368eba35c61e3
container_end_page 5461
container_issue 21
container_start_page 5452
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 527
creator Xie, X.M.
Fan, H.
description Thin film is one of the important geometric configurations in the microelectronic devices. The traditional theories for heterogeneous material are challenged for their application to the thin film configurations (the free-standing and substrate-attached thin films). In the present paper, a finite element analysis with a statistic procedure is proposed to estimate the effective properties of thin films. For the free-standing thin film, the effective stiffness decreases as film thickness decreases. Comparison is made between numerical simulations and analytical solutions derived from a plane stress self-consistent scheme. For the substrate-attached thin film, the effective stiffness is affected by the relative stiffness of the substrate to the film. The numerical simulation shows the effective stiffness of the substrate-attached thin film can vary between the equivalent value of the free-standing thin film and Voigt bound. The three-dimensional Hashin–Shtrikman bounds fail to gauge the effective stiffness of thin film.
doi_str_mv 10.1016/j.msea.2010.05.028
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787049565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092150931000540X</els_id><sourcerecordid>787049565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-24a509422bd980446dbad393362541f39ffc28b6d40ada5272ab368eba35c61e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWB9_wNNexNPWyWsf4EVKtULBi55DNjtpU3Y3NdkW_Pemtnj0kiEz30wmHyF3FKYUaPG4mfYR9ZRBSoCcAqvOyIRWJc9FzYtzMoGa0VxCzS_JVYwbAKAC5IQs5taiGd0es963u24XM2-zNY4Y_AoH9CnR63RzuouZG7JxnQ7ruj4zfrButQt6dH6IN-TCJgRvT_GafL7MP2aLfPn--jZ7XuaGF2zMmdBpC8FY09YVCFG0jW55zVNRCmp5ba1hVVO0AnSrJSuZbnhRYaO5NAVFfk0ejnO3wX_tMI6qd9Fg1-nfZVVZlSBqWchEsiNpgo8xoFXb4HodvhUFdbCmNupgTR2sKZAqWUtN96fxOhrd2aAH4-JfJ-NQVkwcuKcjh-mve4dBReNwMNi6kHyq1rv_nvkBqNmDLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787049565</pqid></control><display><type>article</type><title>Effective modulus of heterogeneous materials in thin film configurations</title><source>ScienceDirect Journals</source><creator>Xie, X.M. ; Fan, H.</creator><creatorcontrib>Xie, X.M. ; Fan, H.</creatorcontrib><description>Thin film is one of the important geometric configurations in the microelectronic devices. The traditional theories for heterogeneous material are challenged for their application to the thin film configurations (the free-standing and substrate-attached thin films). In the present paper, a finite element analysis with a statistic procedure is proposed to estimate the effective properties of thin films. For the free-standing thin film, the effective stiffness decreases as film thickness decreases. Comparison is made between numerical simulations and analytical solutions derived from a plane stress self-consistent scheme. For the substrate-attached thin film, the effective stiffness is affected by the relative stiffness of the substrate to the film. The numerical simulation shows the effective stiffness of the substrate-attached thin film can vary between the equivalent value of the free-standing thin film and Voigt bound. The three-dimensional Hashin–Shtrikman bounds fail to gauge the effective stiffness of thin film.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2010.05.028</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Computer simulation ; Condensed matter: structure, mechanical and thermal properties ; Devices ; Effective stiffness ; Exact sciences and technology ; Finite element method ; Gages ; Heterogeneous material ; Materials science ; Mathematical analysis ; Mathematical models ; Mechanical and acoustical properties ; Physical properties of thin films, nonelectronic ; Physics ; Statistics ; Stiffness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film ; Thin films</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2010-08, Vol.527 (21), p.5452-5461</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-24a509422bd980446dbad393362541f39ffc28b6d40ada5272ab368eba35c61e3</citedby><cites>FETCH-LOGICAL-c362t-24a509422bd980446dbad393362541f39ffc28b6d40ada5272ab368eba35c61e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23078248$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, X.M.</creatorcontrib><creatorcontrib>Fan, H.</creatorcontrib><title>Effective modulus of heterogeneous materials in thin film configurations</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Thin film is one of the important geometric configurations in the microelectronic devices. The traditional theories for heterogeneous material are challenged for their application to the thin film configurations (the free-standing and substrate-attached thin films). In the present paper, a finite element analysis with a statistic procedure is proposed to estimate the effective properties of thin films. For the free-standing thin film, the effective stiffness decreases as film thickness decreases. Comparison is made between numerical simulations and analytical solutions derived from a plane stress self-consistent scheme. For the substrate-attached thin film, the effective stiffness is affected by the relative stiffness of the substrate to the film. The numerical simulation shows the effective stiffness of the substrate-attached thin film can vary between the equivalent value of the free-standing thin film and Voigt bound. The three-dimensional Hashin–Shtrikman bounds fail to gauge the effective stiffness of thin film.</description><subject>Computer simulation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Devices</subject><subject>Effective stiffness</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Gages</subject><subject>Heterogeneous material</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical and acoustical properties</subject><subject>Physical properties of thin films, nonelectronic</subject><subject>Physics</subject><subject>Statistics</subject><subject>Stiffness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film</subject><subject>Thin films</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWB9_wNNexNPWyWsf4EVKtULBi55DNjtpU3Y3NdkW_Pemtnj0kiEz30wmHyF3FKYUaPG4mfYR9ZRBSoCcAqvOyIRWJc9FzYtzMoGa0VxCzS_JVYwbAKAC5IQs5taiGd0es963u24XM2-zNY4Y_AoH9CnR63RzuouZG7JxnQ7ruj4zfrButQt6dH6IN-TCJgRvT_GafL7MP2aLfPn--jZ7XuaGF2zMmdBpC8FY09YVCFG0jW55zVNRCmp5ba1hVVO0AnSrJSuZbnhRYaO5NAVFfk0ejnO3wX_tMI6qd9Fg1-nfZVVZlSBqWchEsiNpgo8xoFXb4HodvhUFdbCmNupgTR2sKZAqWUtN96fxOhrd2aAH4-JfJ-NQVkwcuKcjh-mve4dBReNwMNi6kHyq1rv_nvkBqNmDLg</recordid><startdate>20100820</startdate><enddate>20100820</enddate><creator>Xie, X.M.</creator><creator>Fan, H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100820</creationdate><title>Effective modulus of heterogeneous materials in thin film configurations</title><author>Xie, X.M. ; Fan, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-24a509422bd980446dbad393362541f39ffc28b6d40ada5272ab368eba35c61e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer simulation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Devices</topic><topic>Effective stiffness</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Gages</topic><topic>Heterogeneous material</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical and acoustical properties</topic><topic>Physical properties of thin films, nonelectronic</topic><topic>Physics</topic><topic>Statistics</topic><topic>Stiffness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, X.M.</creatorcontrib><creatorcontrib>Fan, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, X.M.</au><au>Fan, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective modulus of heterogeneous materials in thin film configurations</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2010-08-20</date><risdate>2010</risdate><volume>527</volume><issue>21</issue><spage>5452</spage><epage>5461</epage><pages>5452-5461</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Thin film is one of the important geometric configurations in the microelectronic devices. The traditional theories for heterogeneous material are challenged for their application to the thin film configurations (the free-standing and substrate-attached thin films). In the present paper, a finite element analysis with a statistic procedure is proposed to estimate the effective properties of thin films. For the free-standing thin film, the effective stiffness decreases as film thickness decreases. Comparison is made between numerical simulations and analytical solutions derived from a plane stress self-consistent scheme. For the substrate-attached thin film, the effective stiffness is affected by the relative stiffness of the substrate to the film. The numerical simulation shows the effective stiffness of the substrate-attached thin film can vary between the equivalent value of the free-standing thin film and Voigt bound. The three-dimensional Hashin–Shtrikman bounds fail to gauge the effective stiffness of thin film.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2010.05.028</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2010-08, Vol.527 (21), p.5452-5461
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_787049565
source ScienceDirect Journals
subjects Computer simulation
Condensed matter: structure, mechanical and thermal properties
Devices
Effective stiffness
Exact sciences and technology
Finite element method
Gages
Heterogeneous material
Materials science
Mathematical analysis
Mathematical models
Mechanical and acoustical properties
Physical properties of thin films, nonelectronic
Physics
Statistics
Stiffness
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thin film
Thin films
title Effective modulus of heterogeneous materials in thin film configurations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20modulus%20of%20heterogeneous%20materials%20in%20thin%20film%20configurations&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Xie,%20X.M.&rft.date=2010-08-20&rft.volume=527&rft.issue=21&rft.spage=5452&rft.epage=5461&rft.pages=5452-5461&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2010.05.028&rft_dat=%3Cproquest_cross%3E787049565%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-24a509422bd980446dbad393362541f39ffc28b6d40ada5272ab368eba35c61e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=787049565&rft_id=info:pmid/&rfr_iscdi=true