Loading…
Strain rate sensitivity of nanocrystalline Au films at room temperature
The effect of strain rate on the inelastic properties of nanocrystalline Au films was quantified with 0.85 and 1.76 μm free-standing microscale tension specimens tested over eight decades of strain rate, between 6 × 10 −6 and 20 s −1. The elastic modulus was independent of the strain rate, 66 ± 4.5...
Saved in:
Published in: | Acta materialia 2010-08, Vol.58 (14), p.4674-4684 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c484t-595d0f28f076999f1390abe7e9b91850df171beae3a171ef526993fde02444b03 |
---|---|
cites | cdi_FETCH-LOGICAL-c484t-595d0f28f076999f1390abe7e9b91850df171beae3a171ef526993fde02444b03 |
container_end_page | 4684 |
container_issue | 14 |
container_start_page | 4674 |
container_title | Acta materialia |
container_volume | 58 |
creator | Jonnalagadda, K. Karanjgaokar, N. Chasiotis, I. Chee, J. Peroulis, D. |
description | The effect of strain rate on the inelastic properties of nanocrystalline Au films was quantified with 0.85 and 1.76
μm free-standing microscale tension specimens tested over eight decades of strain rate, between 6
×
10
−6 and 20
s
−1. The elastic modulus was independent of the strain rate, 66
±
4.5
GPa, but the inelastic mechanical response was clearly rate sensitive. The yield strength and the ultimate tensile strength increased with the strain rate in the ranges 575–895 MPa and 675–940
MPa, respectively, with the yield strength reaching the tensile strength at strain rates faster than 10
−1
s
−1. The activation volumes for the two film thicknesses were 4.5 and 8.1
b
3, at strain rates smaller than 10
−4
s
−1 and 12.5 and 14.6
b
3 at strain rates higher than 10
−4
s
−1, while the strain rate sensitivity factor and the ultimate tensile strain increased below 10
−4
s
−1. The latter trends indicated that the strain rate regime 10
−5–10
−4
s
−1 is pivotal in the mechanical response of the particular nanocrystalline Au films. The increased rate sensitivity and the reduced activation volume at slow strain rates were attributed to grain boundary processes that also led to prolonged (5–6
h) and significant primary creep with initial strain rate of the order of 10
−7
s
−1. |
doi_str_mv | 10.1016/j.actamat.2010.04.048 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787050668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645410002740</els_id><sourcerecordid>787050668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-595d0f28f076999f1390abe7e9b91850df171beae3a171ef526993fde02444b03</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxRdRsFY_gpCLeNo62U12NycpRatQ8KCewzQ7gZT9U5O00G9vSotXYWCG4ffmMS_L7jnMOPDqaTNDE7HHOCsg7UCkai6yCW_qMi-ELC_TXEqVV0KK6-wmhA0AL2oBk2z5GT26gXmMxAINwUW3d_HARssGHEbjDyFi17mB2HzHrOv6wDAyP449i9RvKSl3nm6zK4tdoLtzn2bfry9fi7d89bF8X8xXuRGNiLlUsgVbNBbqSilleakA11STWiveSGgtr_makEpMA1lZJKy0LUEhhFhDOc0eT3e3fvzZUYi6d8FQ1-FA4y7ouqlBQlU1iZQn0vgxBE9Wb73r0R80B33MTW_0OTd9zE2DSHXUPZwdMBjsrMfBuPAnLgqlKtFUiXs-cZTe3TvyOhhHg6HWeTJRt6P7x-kXThaGVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787050668</pqid></control><display><type>article</type><title>Strain rate sensitivity of nanocrystalline Au films at room temperature</title><source>ScienceDirect Freedom Collection</source><creator>Jonnalagadda, K. ; Karanjgaokar, N. ; Chasiotis, I. ; Chee, J. ; Peroulis, D.</creator><creatorcontrib>Jonnalagadda, K. ; Karanjgaokar, N. ; Chasiotis, I. ; Chee, J. ; Peroulis, D.</creatorcontrib><description>The effect of strain rate on the inelastic properties of nanocrystalline Au films was quantified with 0.85 and 1.76
μm free-standing microscale tension specimens tested over eight decades of strain rate, between 6
×
10
−6 and 20
s
−1. The elastic modulus was independent of the strain rate, 66
±
4.5
GPa, but the inelastic mechanical response was clearly rate sensitive. The yield strength and the ultimate tensile strength increased with the strain rate in the ranges 575–895 MPa and 675–940
MPa, respectively, with the yield strength reaching the tensile strength at strain rates faster than 10
−1
s
−1. The activation volumes for the two film thicknesses were 4.5 and 8.1
b
3, at strain rates smaller than 10
−4
s
−1 and 12.5 and 14.6
b
3 at strain rates higher than 10
−4
s
−1, while the strain rate sensitivity factor and the ultimate tensile strain increased below 10
−4
s
−1. The latter trends indicated that the strain rate regime 10
−5–10
−4
s
−1 is pivotal in the mechanical response of the particular nanocrystalline Au films. The increased rate sensitivity and the reduced activation volume at slow strain rates were attributed to grain boundary processes that also led to prolonged (5–6
h) and significant primary creep with initial strain rate of the order of 10
−7
s
−1.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2010.04.048</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Activation ; Applied sciences ; Creep ; Creep (materials) ; Creep tests ; Cross-disciplinary physics: materials science; rheology ; Ductility ; Exact sciences and technology ; Film thickness ; Gold ; Grain boundaries ; Materials science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Methods of deposition of films and coatings; film growth and epitaxy ; Microvoids ; Nanocrystalline materials ; Nanocrystals ; Physics ; Strain rate ; Strain rate sensitivity ; Thin films ; Yield strength</subject><ispartof>Acta materialia, 2010-08, Vol.58 (14), p.4674-4684</ispartof><rights>2010 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-595d0f28f076999f1390abe7e9b91850df171beae3a171ef526993fde02444b03</citedby><cites>FETCH-LOGICAL-c484t-595d0f28f076999f1390abe7e9b91850df171beae3a171ef526993fde02444b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22996486$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jonnalagadda, K.</creatorcontrib><creatorcontrib>Karanjgaokar, N.</creatorcontrib><creatorcontrib>Chasiotis, I.</creatorcontrib><creatorcontrib>Chee, J.</creatorcontrib><creatorcontrib>Peroulis, D.</creatorcontrib><title>Strain rate sensitivity of nanocrystalline Au films at room temperature</title><title>Acta materialia</title><description>The effect of strain rate on the inelastic properties of nanocrystalline Au films was quantified with 0.85 and 1.76
μm free-standing microscale tension specimens tested over eight decades of strain rate, between 6
×
10
−6 and 20
s
−1. The elastic modulus was independent of the strain rate, 66
±
4.5
GPa, but the inelastic mechanical response was clearly rate sensitive. The yield strength and the ultimate tensile strength increased with the strain rate in the ranges 575–895 MPa and 675–940
MPa, respectively, with the yield strength reaching the tensile strength at strain rates faster than 10
−1
s
−1. The activation volumes for the two film thicknesses were 4.5 and 8.1
b
3, at strain rates smaller than 10
−4
s
−1 and 12.5 and 14.6
b
3 at strain rates higher than 10
−4
s
−1, while the strain rate sensitivity factor and the ultimate tensile strain increased below 10
−4
s
−1. The latter trends indicated that the strain rate regime 10
−5–10
−4
s
−1 is pivotal in the mechanical response of the particular nanocrystalline Au films. The increased rate sensitivity and the reduced activation volume at slow strain rates were attributed to grain boundary processes that also led to prolonged (5–6
h) and significant primary creep with initial strain rate of the order of 10
−7
s
−1.</description><subject>Activation</subject><subject>Applied sciences</subject><subject>Creep</subject><subject>Creep (materials)</subject><subject>Creep tests</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Ductility</subject><subject>Exact sciences and technology</subject><subject>Film thickness</subject><subject>Gold</subject><subject>Grain boundaries</subject><subject>Materials science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microvoids</subject><subject>Nanocrystalline materials</subject><subject>Nanocrystals</subject><subject>Physics</subject><subject>Strain rate</subject><subject>Strain rate sensitivity</subject><subject>Thin films</subject><subject>Yield strength</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxRdRsFY_gpCLeNo62U12NycpRatQ8KCewzQ7gZT9U5O00G9vSotXYWCG4ffmMS_L7jnMOPDqaTNDE7HHOCsg7UCkai6yCW_qMi-ELC_TXEqVV0KK6-wmhA0AL2oBk2z5GT26gXmMxAINwUW3d_HARssGHEbjDyFi17mB2HzHrOv6wDAyP449i9RvKSl3nm6zK4tdoLtzn2bfry9fi7d89bF8X8xXuRGNiLlUsgVbNBbqSilleakA11STWiveSGgtr_makEpMA1lZJKy0LUEhhFhDOc0eT3e3fvzZUYi6d8FQ1-FA4y7ouqlBQlU1iZQn0vgxBE9Wb73r0R80B33MTW_0OTd9zE2DSHXUPZwdMBjsrMfBuPAnLgqlKtFUiXs-cZTe3TvyOhhHg6HWeTJRt6P7x-kXThaGVA</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Jonnalagadda, K.</creator><creator>Karanjgaokar, N.</creator><creator>Chasiotis, I.</creator><creator>Chee, J.</creator><creator>Peroulis, D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100801</creationdate><title>Strain rate sensitivity of nanocrystalline Au films at room temperature</title><author>Jonnalagadda, K. ; Karanjgaokar, N. ; Chasiotis, I. ; Chee, J. ; Peroulis, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-595d0f28f076999f1390abe7e9b91850df171beae3a171ef526993fde02444b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Activation</topic><topic>Applied sciences</topic><topic>Creep</topic><topic>Creep (materials)</topic><topic>Creep tests</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Ductility</topic><topic>Exact sciences and technology</topic><topic>Film thickness</topic><topic>Gold</topic><topic>Grain boundaries</topic><topic>Materials science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microvoids</topic><topic>Nanocrystalline materials</topic><topic>Nanocrystals</topic><topic>Physics</topic><topic>Strain rate</topic><topic>Strain rate sensitivity</topic><topic>Thin films</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jonnalagadda, K.</creatorcontrib><creatorcontrib>Karanjgaokar, N.</creatorcontrib><creatorcontrib>Chasiotis, I.</creatorcontrib><creatorcontrib>Chee, J.</creatorcontrib><creatorcontrib>Peroulis, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jonnalagadda, K.</au><au>Karanjgaokar, N.</au><au>Chasiotis, I.</au><au>Chee, J.</au><au>Peroulis, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain rate sensitivity of nanocrystalline Au films at room temperature</atitle><jtitle>Acta materialia</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>58</volume><issue>14</issue><spage>4674</spage><epage>4684</epage><pages>4674-4684</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The effect of strain rate on the inelastic properties of nanocrystalline Au films was quantified with 0.85 and 1.76
μm free-standing microscale tension specimens tested over eight decades of strain rate, between 6
×
10
−6 and 20
s
−1. The elastic modulus was independent of the strain rate, 66
±
4.5
GPa, but the inelastic mechanical response was clearly rate sensitive. The yield strength and the ultimate tensile strength increased with the strain rate in the ranges 575–895 MPa and 675–940
MPa, respectively, with the yield strength reaching the tensile strength at strain rates faster than 10
−1
s
−1. The activation volumes for the two film thicknesses were 4.5 and 8.1
b
3, at strain rates smaller than 10
−4
s
−1 and 12.5 and 14.6
b
3 at strain rates higher than 10
−4
s
−1, while the strain rate sensitivity factor and the ultimate tensile strain increased below 10
−4
s
−1. The latter trends indicated that the strain rate regime 10
−5–10
−4
s
−1 is pivotal in the mechanical response of the particular nanocrystalline Au films. The increased rate sensitivity and the reduced activation volume at slow strain rates were attributed to grain boundary processes that also led to prolonged (5–6
h) and significant primary creep with initial strain rate of the order of 10
−7
s
−1.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2010.04.048</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2010-08, Vol.58 (14), p.4674-4684 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_787050668 |
source | ScienceDirect Freedom Collection |
subjects | Activation Applied sciences Creep Creep (materials) Creep tests Cross-disciplinary physics: materials science rheology Ductility Exact sciences and technology Film thickness Gold Grain boundaries Materials science Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Methods of deposition of films and coatings film growth and epitaxy Microvoids Nanocrystalline materials Nanocrystals Physics Strain rate Strain rate sensitivity Thin films Yield strength |
title | Strain rate sensitivity of nanocrystalline Au films at room temperature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20rate%20sensitivity%20of%20nanocrystalline%20Au%20films%20at%20room%20temperature&rft.jtitle=Acta%20materialia&rft.au=Jonnalagadda,%20K.&rft.date=2010-08-01&rft.volume=58&rft.issue=14&rft.spage=4674&rft.epage=4684&rft.pages=4674-4684&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2010.04.048&rft_dat=%3Cproquest_cross%3E787050668%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-595d0f28f076999f1390abe7e9b91850df171beae3a171ef526993fde02444b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=787050668&rft_id=info:pmid/&rfr_iscdi=true |