Loading…

Strain rate sensitivity of nanocrystalline Au films at room temperature

The effect of strain rate on the inelastic properties of nanocrystalline Au films was quantified with 0.85 and 1.76 μm free-standing microscale tension specimens tested over eight decades of strain rate, between 6 × 10 −6 and 20 s −1. The elastic modulus was independent of the strain rate, 66 ± 4.5...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia 2010-08, Vol.58 (14), p.4674-4684
Main Authors: Jonnalagadda, K., Karanjgaokar, N., Chasiotis, I., Chee, J., Peroulis, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c484t-595d0f28f076999f1390abe7e9b91850df171beae3a171ef526993fde02444b03
cites cdi_FETCH-LOGICAL-c484t-595d0f28f076999f1390abe7e9b91850df171beae3a171ef526993fde02444b03
container_end_page 4684
container_issue 14
container_start_page 4674
container_title Acta materialia
container_volume 58
creator Jonnalagadda, K.
Karanjgaokar, N.
Chasiotis, I.
Chee, J.
Peroulis, D.
description The effect of strain rate on the inelastic properties of nanocrystalline Au films was quantified with 0.85 and 1.76 μm free-standing microscale tension specimens tested over eight decades of strain rate, between 6 × 10 −6 and 20 s −1. The elastic modulus was independent of the strain rate, 66 ± 4.5 GPa, but the inelastic mechanical response was clearly rate sensitive. The yield strength and the ultimate tensile strength increased with the strain rate in the ranges 575–895 MPa and 675–940 MPa, respectively, with the yield strength reaching the tensile strength at strain rates faster than 10 −1 s −1. The activation volumes for the two film thicknesses were 4.5 and 8.1 b 3, at strain rates smaller than 10 −4 s −1 and 12.5 and 14.6 b 3 at strain rates higher than 10 −4 s −1, while the strain rate sensitivity factor and the ultimate tensile strain increased below 10 −4 s −1. The latter trends indicated that the strain rate regime 10 −5–10 −4 s −1 is pivotal in the mechanical response of the particular nanocrystalline Au films. The increased rate sensitivity and the reduced activation volume at slow strain rates were attributed to grain boundary processes that also led to prolonged (5–6 h) and significant primary creep with initial strain rate of the order of 10 −7 s −1.
doi_str_mv 10.1016/j.actamat.2010.04.048
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787050668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645410002740</els_id><sourcerecordid>787050668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-595d0f28f076999f1390abe7e9b91850df171beae3a171ef526993fde02444b03</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxRdRsFY_gpCLeNo62U12NycpRatQ8KCewzQ7gZT9U5O00G9vSotXYWCG4ffmMS_L7jnMOPDqaTNDE7HHOCsg7UCkai6yCW_qMi-ELC_TXEqVV0KK6-wmhA0AL2oBk2z5GT26gXmMxAINwUW3d_HARssGHEbjDyFi17mB2HzHrOv6wDAyP449i9RvKSl3nm6zK4tdoLtzn2bfry9fi7d89bF8X8xXuRGNiLlUsgVbNBbqSilleakA11STWiveSGgtr_makEpMA1lZJKy0LUEhhFhDOc0eT3e3fvzZUYi6d8FQ1-FA4y7ouqlBQlU1iZQn0vgxBE9Wb73r0R80B33MTW_0OTd9zE2DSHXUPZwdMBjsrMfBuPAnLgqlKtFUiXs-cZTe3TvyOhhHg6HWeTJRt6P7x-kXThaGVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787050668</pqid></control><display><type>article</type><title>Strain rate sensitivity of nanocrystalline Au films at room temperature</title><source>ScienceDirect Freedom Collection</source><creator>Jonnalagadda, K. ; Karanjgaokar, N. ; Chasiotis, I. ; Chee, J. ; Peroulis, D.</creator><creatorcontrib>Jonnalagadda, K. ; Karanjgaokar, N. ; Chasiotis, I. ; Chee, J. ; Peroulis, D.</creatorcontrib><description>The effect of strain rate on the inelastic properties of nanocrystalline Au films was quantified with 0.85 and 1.76 μm free-standing microscale tension specimens tested over eight decades of strain rate, between 6 × 10 −6 and 20 s −1. The elastic modulus was independent of the strain rate, 66 ± 4.5 GPa, but the inelastic mechanical response was clearly rate sensitive. The yield strength and the ultimate tensile strength increased with the strain rate in the ranges 575–895 MPa and 675–940 MPa, respectively, with the yield strength reaching the tensile strength at strain rates faster than 10 −1 s −1. The activation volumes for the two film thicknesses were 4.5 and 8.1 b 3, at strain rates smaller than 10 −4 s −1 and 12.5 and 14.6 b 3 at strain rates higher than 10 −4 s −1, while the strain rate sensitivity factor and the ultimate tensile strain increased below 10 −4 s −1. The latter trends indicated that the strain rate regime 10 −5–10 −4 s −1 is pivotal in the mechanical response of the particular nanocrystalline Au films. The increased rate sensitivity and the reduced activation volume at slow strain rates were attributed to grain boundary processes that also led to prolonged (5–6 h) and significant primary creep with initial strain rate of the order of 10 −7 s −1.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2010.04.048</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Activation ; Applied sciences ; Creep ; Creep (materials) ; Creep tests ; Cross-disciplinary physics: materials science; rheology ; Ductility ; Exact sciences and technology ; Film thickness ; Gold ; Grain boundaries ; Materials science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Methods of deposition of films and coatings; film growth and epitaxy ; Microvoids ; Nanocrystalline materials ; Nanocrystals ; Physics ; Strain rate ; Strain rate sensitivity ; Thin films ; Yield strength</subject><ispartof>Acta materialia, 2010-08, Vol.58 (14), p.4674-4684</ispartof><rights>2010 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-595d0f28f076999f1390abe7e9b91850df171beae3a171ef526993fde02444b03</citedby><cites>FETCH-LOGICAL-c484t-595d0f28f076999f1390abe7e9b91850df171beae3a171ef526993fde02444b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22996486$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jonnalagadda, K.</creatorcontrib><creatorcontrib>Karanjgaokar, N.</creatorcontrib><creatorcontrib>Chasiotis, I.</creatorcontrib><creatorcontrib>Chee, J.</creatorcontrib><creatorcontrib>Peroulis, D.</creatorcontrib><title>Strain rate sensitivity of nanocrystalline Au films at room temperature</title><title>Acta materialia</title><description>The effect of strain rate on the inelastic properties of nanocrystalline Au films was quantified with 0.85 and 1.76 μm free-standing microscale tension specimens tested over eight decades of strain rate, between 6 × 10 −6 and 20 s −1. The elastic modulus was independent of the strain rate, 66 ± 4.5 GPa, but the inelastic mechanical response was clearly rate sensitive. The yield strength and the ultimate tensile strength increased with the strain rate in the ranges 575–895 MPa and 675–940 MPa, respectively, with the yield strength reaching the tensile strength at strain rates faster than 10 −1 s −1. The activation volumes for the two film thicknesses were 4.5 and 8.1 b 3, at strain rates smaller than 10 −4 s −1 and 12.5 and 14.6 b 3 at strain rates higher than 10 −4 s −1, while the strain rate sensitivity factor and the ultimate tensile strain increased below 10 −4 s −1. The latter trends indicated that the strain rate regime 10 −5–10 −4 s −1 is pivotal in the mechanical response of the particular nanocrystalline Au films. The increased rate sensitivity and the reduced activation volume at slow strain rates were attributed to grain boundary processes that also led to prolonged (5–6 h) and significant primary creep with initial strain rate of the order of 10 −7 s −1.</description><subject>Activation</subject><subject>Applied sciences</subject><subject>Creep</subject><subject>Creep (materials)</subject><subject>Creep tests</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Ductility</subject><subject>Exact sciences and technology</subject><subject>Film thickness</subject><subject>Gold</subject><subject>Grain boundaries</subject><subject>Materials science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microvoids</subject><subject>Nanocrystalline materials</subject><subject>Nanocrystals</subject><subject>Physics</subject><subject>Strain rate</subject><subject>Strain rate sensitivity</subject><subject>Thin films</subject><subject>Yield strength</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxRdRsFY_gpCLeNo62U12NycpRatQ8KCewzQ7gZT9U5O00G9vSotXYWCG4ffmMS_L7jnMOPDqaTNDE7HHOCsg7UCkai6yCW_qMi-ELC_TXEqVV0KK6-wmhA0AL2oBk2z5GT26gXmMxAINwUW3d_HARssGHEbjDyFi17mB2HzHrOv6wDAyP449i9RvKSl3nm6zK4tdoLtzn2bfry9fi7d89bF8X8xXuRGNiLlUsgVbNBbqSilleakA11STWiveSGgtr_makEpMA1lZJKy0LUEhhFhDOc0eT3e3fvzZUYi6d8FQ1-FA4y7ouqlBQlU1iZQn0vgxBE9Wb73r0R80B33MTW_0OTd9zE2DSHXUPZwdMBjsrMfBuPAnLgqlKtFUiXs-cZTe3TvyOhhHg6HWeTJRt6P7x-kXThaGVA</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Jonnalagadda, K.</creator><creator>Karanjgaokar, N.</creator><creator>Chasiotis, I.</creator><creator>Chee, J.</creator><creator>Peroulis, D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100801</creationdate><title>Strain rate sensitivity of nanocrystalline Au films at room temperature</title><author>Jonnalagadda, K. ; Karanjgaokar, N. ; Chasiotis, I. ; Chee, J. ; Peroulis, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-595d0f28f076999f1390abe7e9b91850df171beae3a171ef526993fde02444b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Activation</topic><topic>Applied sciences</topic><topic>Creep</topic><topic>Creep (materials)</topic><topic>Creep tests</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Ductility</topic><topic>Exact sciences and technology</topic><topic>Film thickness</topic><topic>Gold</topic><topic>Grain boundaries</topic><topic>Materials science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microvoids</topic><topic>Nanocrystalline materials</topic><topic>Nanocrystals</topic><topic>Physics</topic><topic>Strain rate</topic><topic>Strain rate sensitivity</topic><topic>Thin films</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jonnalagadda, K.</creatorcontrib><creatorcontrib>Karanjgaokar, N.</creatorcontrib><creatorcontrib>Chasiotis, I.</creatorcontrib><creatorcontrib>Chee, J.</creatorcontrib><creatorcontrib>Peroulis, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jonnalagadda, K.</au><au>Karanjgaokar, N.</au><au>Chasiotis, I.</au><au>Chee, J.</au><au>Peroulis, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain rate sensitivity of nanocrystalline Au films at room temperature</atitle><jtitle>Acta materialia</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>58</volume><issue>14</issue><spage>4674</spage><epage>4684</epage><pages>4674-4684</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The effect of strain rate on the inelastic properties of nanocrystalline Au films was quantified with 0.85 and 1.76 μm free-standing microscale tension specimens tested over eight decades of strain rate, between 6 × 10 −6 and 20 s −1. The elastic modulus was independent of the strain rate, 66 ± 4.5 GPa, but the inelastic mechanical response was clearly rate sensitive. The yield strength and the ultimate tensile strength increased with the strain rate in the ranges 575–895 MPa and 675–940 MPa, respectively, with the yield strength reaching the tensile strength at strain rates faster than 10 −1 s −1. The activation volumes for the two film thicknesses were 4.5 and 8.1 b 3, at strain rates smaller than 10 −4 s −1 and 12.5 and 14.6 b 3 at strain rates higher than 10 −4 s −1, while the strain rate sensitivity factor and the ultimate tensile strain increased below 10 −4 s −1. The latter trends indicated that the strain rate regime 10 −5–10 −4 s −1 is pivotal in the mechanical response of the particular nanocrystalline Au films. The increased rate sensitivity and the reduced activation volume at slow strain rates were attributed to grain boundary processes that also led to prolonged (5–6 h) and significant primary creep with initial strain rate of the order of 10 −7 s −1.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2010.04.048</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2010-08, Vol.58 (14), p.4674-4684
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_787050668
source ScienceDirect Freedom Collection
subjects Activation
Applied sciences
Creep
Creep (materials)
Creep tests
Cross-disciplinary physics: materials science
rheology
Ductility
Exact sciences and technology
Film thickness
Gold
Grain boundaries
Materials science
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Methods of deposition of films and coatings
film growth and epitaxy
Microvoids
Nanocrystalline materials
Nanocrystals
Physics
Strain rate
Strain rate sensitivity
Thin films
Yield strength
title Strain rate sensitivity of nanocrystalline Au films at room temperature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20rate%20sensitivity%20of%20nanocrystalline%20Au%20films%20at%20room%20temperature&rft.jtitle=Acta%20materialia&rft.au=Jonnalagadda,%20K.&rft.date=2010-08-01&rft.volume=58&rft.issue=14&rft.spage=4674&rft.epage=4684&rft.pages=4674-4684&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2010.04.048&rft_dat=%3Cproquest_cross%3E787050668%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-595d0f28f076999f1390abe7e9b91850df171beae3a171ef526993fde02444b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=787050668&rft_id=info:pmid/&rfr_iscdi=true