Loading…
Characteristics of the isolated apical plasmalemma and intracellular tubulovesicles of the gastric acid secreting cells: demonstration of secretagogue-induced membrane mobilization
Separation of the gradient-purified gastric microsome into two membrane subfractions of distinct enzymatic and phospholipid composition has been achieved by mild SDS (0.033% w/v) treatment followed by sucrose gradient centrifugation of the pig and rabbit gastric microsomes. While the high-density me...
Saved in:
Published in: | Biochemistry (Easton) 1988-12, Vol.27 (25), p.8958-8968 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Separation of the gradient-purified gastric microsome into two membrane subfractions of distinct enzymatic and phospholipid composition has been achieved by mild SDS (0.033% w/v) treatment followed by sucrose gradient centrifugation of the pig and rabbit gastric microsomes. While the high-density membranes had all of the (H+,K+)-ATPase and K+-pNPPase activities and revealed a single major 100-kDa band on SDS-PAGE, the low-density membranes contained all of the 5'-nucleotidase and nearly all of the Mg2+-ATPase. In the present study, the low-density subfraction has been characterized to be derived from the apical membranes and the high-density one from the intracellular tubulovesicular membranes of the parietal cells. Such characterization was based primarily on sole dependency of the apical plasma membranes on the endogenous activator for (H+,K+)-ATPase activity, differential sensitivity of the activator (AF)-dependent and -independent (H+,K+)-ATPase on micromolar vanadate and Ca2+, specific vitamin B12 binding ability of the apical plasmalemma, phospholipid and protein profiles of the two membrane subfractions, and other parameters. The AF, mentioned previously, has recently been implicated as a cytosolic regulator of the gastric (H+,K+)-ATPase [Bandopadhyay et al. (1987) J. Biol. Chem. 262, 5664-5670]. Two different forms (i.e., AF-dependent and -independent forms) of the (H+,K+)-ATPase are suggested to be present in the tubulovesicles on the basis of differential vanadate sensitivity while the AF-dependent form alone is present in the apical membranes. The data have been discussed in terms of stimulation-induced membrane transformation characteristic of the H+-secreting epithelia including the acid-secreting cells of the stomach. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00425a013 |