Loading…
Coefficient identification in Euler–Bernoulli equation from over-posed data
A method for solving the inverse problem for coefficient identification in the Euler–Bernoulli equation from over-posed data is presented. The original inverse problem is replaced by a minimization problem. The method is applied to the problem for identifying the coefficient in the case when it is a...
Saved in:
Published in: | Journal of computational and applied mathematics 2010-11, Vol.235 (2), p.450-459 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c332t-32e28e611216c0f119710ca532c7aaef25d3a6258831b62882be02cf6f888d873 |
---|---|
cites | cdi_FETCH-LOGICAL-c332t-32e28e611216c0f119710ca532c7aaef25d3a6258831b62882be02cf6f888d873 |
container_end_page | 459 |
container_issue | 2 |
container_start_page | 450 |
container_title | Journal of computational and applied mathematics |
container_volume | 235 |
creator | Marinov, Tchavdar T. Marinova, Rossitza S. |
description | A method for solving the inverse problem for coefficient identification in the Euler–Bernoulli equation from over-posed data is presented. The original inverse problem is replaced by a minimization problem. The method is applied to the problem for identifying the coefficient in the case when it is a piece-wise polynomial function. Several examples are elaborated and the numerical results confirm that the solution of the imbedding problem coincides with the direct simulation of the original problem within the second order of approximation. |
doi_str_mv | 10.1016/j.cam.2010.05.048 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787106178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042710003389</els_id><sourcerecordid>787106178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-32e28e611216c0f119710ca532c7aaef25d3a6258831b62882be02cf6f888d873</originalsourceid><addsrcrecordid>eNp9kM9OwzAMxiMEEmPwANx6QZw6nKRtMnGCafyRhrjAOcpSR8rUNVvSInHjHXhDnoRUnThysWX582f7R8glhRkFWt1sZkZvZwxSDeUMCnlEJlSKeU6FkMdkAlyIHAomTslZjBsAqOa0mJCXhUdrnXHYdpmrU3Sp0p3zbebabNk3GH6-vu8xtL5vGpfhvh-7Nvht5j8w5Dsfsc5q3elzcmJ1E_HikKfk_WH5tnjKV6-Pz4u7VW44Z13OGTKJFaWMVgYspXNBweiSMyO0RsvKmuuKlVJyuq6YlGyNwIytrJSyloJPyfXouwt-32Ps1NZFg02jW_R9VEImw4oKmZR0VJrgYwxo1S64rQ6fioIayKmNSuTUQE5BqRK5NHN1cNfR6MYG3RoX_wYZ5wUIGK64HXWYXv1wGFQcOBqsXUDTqdq7f7b8Aj42g74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787106178</pqid></control><display><type>article</type><title>Coefficient identification in Euler–Bernoulli equation from over-posed data</title><source>ScienceDirect Freedom Collection</source><creator>Marinov, Tchavdar T. ; Marinova, Rossitza S.</creator><creatorcontrib>Marinov, Tchavdar T. ; Marinova, Rossitza S.</creatorcontrib><description>A method for solving the inverse problem for coefficient identification in the Euler–Bernoulli equation from over-posed data is presented. The original inverse problem is replaced by a minimization problem. The method is applied to the problem for identifying the coefficient in the case when it is a piece-wise polynomial function. Several examples are elaborated and the numerical results confirm that the solution of the imbedding problem coincides with the direct simulation of the original problem within the second order of approximation.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2010.05.048</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Approximation ; Calculus of variations and optimal control ; Coefficient identification ; Coefficients ; Computer simulation ; Euler-Bernoulli equation ; Exact sciences and technology ; Imbeddings ; Inverse problem ; Inverse problems ; Mathematical analysis ; Mathematical models ; Mathematics ; Method of Variational Imbedding ; Numerical analysis ; Numerical analysis in abstract spaces ; Numerical analysis. Scientific computation ; Numerical methods in mathematical programming, optimization and calculus of variations ; Numerical methods in optimization and calculus of variations ; Optimization ; Partial differential equations ; Sciences and techniques of general use</subject><ispartof>Journal of computational and applied mathematics, 2010-11, Vol.235 (2), p.450-459</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-32e28e611216c0f119710ca532c7aaef25d3a6258831b62882be02cf6f888d873</citedby><cites>FETCH-LOGICAL-c332t-32e28e611216c0f119710ca532c7aaef25d3a6258831b62882be02cf6f888d873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23340707$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marinov, Tchavdar T.</creatorcontrib><creatorcontrib>Marinova, Rossitza S.</creatorcontrib><title>Coefficient identification in Euler–Bernoulli equation from over-posed data</title><title>Journal of computational and applied mathematics</title><description>A method for solving the inverse problem for coefficient identification in the Euler–Bernoulli equation from over-posed data is presented. The original inverse problem is replaced by a minimization problem. The method is applied to the problem for identifying the coefficient in the case when it is a piece-wise polynomial function. Several examples are elaborated and the numerical results confirm that the solution of the imbedding problem coincides with the direct simulation of the original problem within the second order of approximation.</description><subject>Approximation</subject><subject>Calculus of variations and optimal control</subject><subject>Coefficient identification</subject><subject>Coefficients</subject><subject>Computer simulation</subject><subject>Euler-Bernoulli equation</subject><subject>Exact sciences and technology</subject><subject>Imbeddings</subject><subject>Inverse problem</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Method of Variational Imbedding</subject><subject>Numerical analysis</subject><subject>Numerical analysis in abstract spaces</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in mathematical programming, optimization and calculus of variations</subject><subject>Numerical methods in optimization and calculus of variations</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OwzAMxiMEEmPwANx6QZw6nKRtMnGCafyRhrjAOcpSR8rUNVvSInHjHXhDnoRUnThysWX582f7R8glhRkFWt1sZkZvZwxSDeUMCnlEJlSKeU6FkMdkAlyIHAomTslZjBsAqOa0mJCXhUdrnXHYdpmrU3Sp0p3zbebabNk3GH6-vu8xtL5vGpfhvh-7Nvht5j8w5Dsfsc5q3elzcmJ1E_HikKfk_WH5tnjKV6-Pz4u7VW44Z13OGTKJFaWMVgYspXNBweiSMyO0RsvKmuuKlVJyuq6YlGyNwIytrJSyloJPyfXouwt-32Ps1NZFg02jW_R9VEImw4oKmZR0VJrgYwxo1S64rQ6fioIayKmNSuTUQE5BqRK5NHN1cNfR6MYG3RoX_wYZ5wUIGK64HXWYXv1wGFQcOBqsXUDTqdq7f7b8Aj42g74</recordid><startdate>20101115</startdate><enddate>20101115</enddate><creator>Marinov, Tchavdar T.</creator><creator>Marinova, Rossitza S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101115</creationdate><title>Coefficient identification in Euler–Bernoulli equation from over-posed data</title><author>Marinov, Tchavdar T. ; Marinova, Rossitza S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-32e28e611216c0f119710ca532c7aaef25d3a6258831b62882be02cf6f888d873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Calculus of variations and optimal control</topic><topic>Coefficient identification</topic><topic>Coefficients</topic><topic>Computer simulation</topic><topic>Euler-Bernoulli equation</topic><topic>Exact sciences and technology</topic><topic>Imbeddings</topic><topic>Inverse problem</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Method of Variational Imbedding</topic><topic>Numerical analysis</topic><topic>Numerical analysis in abstract spaces</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in mathematical programming, optimization and calculus of variations</topic><topic>Numerical methods in optimization and calculus of variations</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marinov, Tchavdar T.</creatorcontrib><creatorcontrib>Marinova, Rossitza S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marinov, Tchavdar T.</au><au>Marinova, Rossitza S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coefficient identification in Euler–Bernoulli equation from over-posed data</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2010-11-15</date><risdate>2010</risdate><volume>235</volume><issue>2</issue><spage>450</spage><epage>459</epage><pages>450-459</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>A method for solving the inverse problem for coefficient identification in the Euler–Bernoulli equation from over-posed data is presented. The original inverse problem is replaced by a minimization problem. The method is applied to the problem for identifying the coefficient in the case when it is a piece-wise polynomial function. Several examples are elaborated and the numerical results confirm that the solution of the imbedding problem coincides with the direct simulation of the original problem within the second order of approximation.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2010.05.048</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2010-11, Vol.235 (2), p.450-459 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_787106178 |
source | ScienceDirect Freedom Collection |
subjects | Approximation Calculus of variations and optimal control Coefficient identification Coefficients Computer simulation Euler-Bernoulli equation Exact sciences and technology Imbeddings Inverse problem Inverse problems Mathematical analysis Mathematical models Mathematics Method of Variational Imbedding Numerical analysis Numerical analysis in abstract spaces Numerical analysis. Scientific computation Numerical methods in mathematical programming, optimization and calculus of variations Numerical methods in optimization and calculus of variations Optimization Partial differential equations Sciences and techniques of general use |
title | Coefficient identification in Euler–Bernoulli equation from over-posed data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coefficient%20identification%20in%20Euler%E2%80%93Bernoulli%20equation%20from%20over-posed%20data&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Marinov,%20Tchavdar%20T.&rft.date=2010-11-15&rft.volume=235&rft.issue=2&rft.spage=450&rft.epage=459&rft.pages=450-459&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2010.05.048&rft_dat=%3Cproquest_cross%3E787106178%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-32e28e611216c0f119710ca532c7aaef25d3a6258831b62882be02cf6f888d873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=787106178&rft_id=info:pmid/&rfr_iscdi=true |