Loading…

Coefficient identification in Euler–Bernoulli equation from over-posed data

A method for solving the inverse problem for coefficient identification in the Euler–Bernoulli equation from over-posed data is presented. The original inverse problem is replaced by a minimization problem. The method is applied to the problem for identifying the coefficient in the case when it is a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2010-11, Vol.235 (2), p.450-459
Main Authors: Marinov, Tchavdar T., Marinova, Rossitza S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c332t-32e28e611216c0f119710ca532c7aaef25d3a6258831b62882be02cf6f888d873
cites cdi_FETCH-LOGICAL-c332t-32e28e611216c0f119710ca532c7aaef25d3a6258831b62882be02cf6f888d873
container_end_page 459
container_issue 2
container_start_page 450
container_title Journal of computational and applied mathematics
container_volume 235
creator Marinov, Tchavdar T.
Marinova, Rossitza S.
description A method for solving the inverse problem for coefficient identification in the Euler–Bernoulli equation from over-posed data is presented. The original inverse problem is replaced by a minimization problem. The method is applied to the problem for identifying the coefficient in the case when it is a piece-wise polynomial function. Several examples are elaborated and the numerical results confirm that the solution of the imbedding problem coincides with the direct simulation of the original problem within the second order of approximation.
doi_str_mv 10.1016/j.cam.2010.05.048
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787106178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042710003389</els_id><sourcerecordid>787106178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-32e28e611216c0f119710ca532c7aaef25d3a6258831b62882be02cf6f888d873</originalsourceid><addsrcrecordid>eNp9kM9OwzAMxiMEEmPwANx6QZw6nKRtMnGCafyRhrjAOcpSR8rUNVvSInHjHXhDnoRUnThysWX582f7R8glhRkFWt1sZkZvZwxSDeUMCnlEJlSKeU6FkMdkAlyIHAomTslZjBsAqOa0mJCXhUdrnXHYdpmrU3Sp0p3zbebabNk3GH6-vu8xtL5vGpfhvh-7Nvht5j8w5Dsfsc5q3elzcmJ1E_HikKfk_WH5tnjKV6-Pz4u7VW44Z13OGTKJFaWMVgYspXNBweiSMyO0RsvKmuuKlVJyuq6YlGyNwIytrJSyloJPyfXouwt-32Ps1NZFg02jW_R9VEImw4oKmZR0VJrgYwxo1S64rQ6fioIayKmNSuTUQE5BqRK5NHN1cNfR6MYG3RoX_wYZ5wUIGK64HXWYXv1wGFQcOBqsXUDTqdq7f7b8Aj42g74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787106178</pqid></control><display><type>article</type><title>Coefficient identification in Euler–Bernoulli equation from over-posed data</title><source>ScienceDirect Freedom Collection</source><creator>Marinov, Tchavdar T. ; Marinova, Rossitza S.</creator><creatorcontrib>Marinov, Tchavdar T. ; Marinova, Rossitza S.</creatorcontrib><description>A method for solving the inverse problem for coefficient identification in the Euler–Bernoulli equation from over-posed data is presented. The original inverse problem is replaced by a minimization problem. The method is applied to the problem for identifying the coefficient in the case when it is a piece-wise polynomial function. Several examples are elaborated and the numerical results confirm that the solution of the imbedding problem coincides with the direct simulation of the original problem within the second order of approximation.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2010.05.048</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Approximation ; Calculus of variations and optimal control ; Coefficient identification ; Coefficients ; Computer simulation ; Euler-Bernoulli equation ; Exact sciences and technology ; Imbeddings ; Inverse problem ; Inverse problems ; Mathematical analysis ; Mathematical models ; Mathematics ; Method of Variational Imbedding ; Numerical analysis ; Numerical analysis in abstract spaces ; Numerical analysis. Scientific computation ; Numerical methods in mathematical programming, optimization and calculus of variations ; Numerical methods in optimization and calculus of variations ; Optimization ; Partial differential equations ; Sciences and techniques of general use</subject><ispartof>Journal of computational and applied mathematics, 2010-11, Vol.235 (2), p.450-459</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-32e28e611216c0f119710ca532c7aaef25d3a6258831b62882be02cf6f888d873</citedby><cites>FETCH-LOGICAL-c332t-32e28e611216c0f119710ca532c7aaef25d3a6258831b62882be02cf6f888d873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23340707$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marinov, Tchavdar T.</creatorcontrib><creatorcontrib>Marinova, Rossitza S.</creatorcontrib><title>Coefficient identification in Euler–Bernoulli equation from over-posed data</title><title>Journal of computational and applied mathematics</title><description>A method for solving the inverse problem for coefficient identification in the Euler–Bernoulli equation from over-posed data is presented. The original inverse problem is replaced by a minimization problem. The method is applied to the problem for identifying the coefficient in the case when it is a piece-wise polynomial function. Several examples are elaborated and the numerical results confirm that the solution of the imbedding problem coincides with the direct simulation of the original problem within the second order of approximation.</description><subject>Approximation</subject><subject>Calculus of variations and optimal control</subject><subject>Coefficient identification</subject><subject>Coefficients</subject><subject>Computer simulation</subject><subject>Euler-Bernoulli equation</subject><subject>Exact sciences and technology</subject><subject>Imbeddings</subject><subject>Inverse problem</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Method of Variational Imbedding</subject><subject>Numerical analysis</subject><subject>Numerical analysis in abstract spaces</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in mathematical programming, optimization and calculus of variations</subject><subject>Numerical methods in optimization and calculus of variations</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OwzAMxiMEEmPwANx6QZw6nKRtMnGCafyRhrjAOcpSR8rUNVvSInHjHXhDnoRUnThysWX582f7R8glhRkFWt1sZkZvZwxSDeUMCnlEJlSKeU6FkMdkAlyIHAomTslZjBsAqOa0mJCXhUdrnXHYdpmrU3Sp0p3zbebabNk3GH6-vu8xtL5vGpfhvh-7Nvht5j8w5Dsfsc5q3elzcmJ1E_HikKfk_WH5tnjKV6-Pz4u7VW44Z13OGTKJFaWMVgYspXNBweiSMyO0RsvKmuuKlVJyuq6YlGyNwIytrJSyloJPyfXouwt-32Ps1NZFg02jW_R9VEImw4oKmZR0VJrgYwxo1S64rQ6fioIayKmNSuTUQE5BqRK5NHN1cNfR6MYG3RoX_wYZ5wUIGK64HXWYXv1wGFQcOBqsXUDTqdq7f7b8Aj42g74</recordid><startdate>20101115</startdate><enddate>20101115</enddate><creator>Marinov, Tchavdar T.</creator><creator>Marinova, Rossitza S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101115</creationdate><title>Coefficient identification in Euler–Bernoulli equation from over-posed data</title><author>Marinov, Tchavdar T. ; Marinova, Rossitza S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-32e28e611216c0f119710ca532c7aaef25d3a6258831b62882be02cf6f888d873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Calculus of variations and optimal control</topic><topic>Coefficient identification</topic><topic>Coefficients</topic><topic>Computer simulation</topic><topic>Euler-Bernoulli equation</topic><topic>Exact sciences and technology</topic><topic>Imbeddings</topic><topic>Inverse problem</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Method of Variational Imbedding</topic><topic>Numerical analysis</topic><topic>Numerical analysis in abstract spaces</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in mathematical programming, optimization and calculus of variations</topic><topic>Numerical methods in optimization and calculus of variations</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marinov, Tchavdar T.</creatorcontrib><creatorcontrib>Marinova, Rossitza S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marinov, Tchavdar T.</au><au>Marinova, Rossitza S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coefficient identification in Euler–Bernoulli equation from over-posed data</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2010-11-15</date><risdate>2010</risdate><volume>235</volume><issue>2</issue><spage>450</spage><epage>459</epage><pages>450-459</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>A method for solving the inverse problem for coefficient identification in the Euler–Bernoulli equation from over-posed data is presented. The original inverse problem is replaced by a minimization problem. The method is applied to the problem for identifying the coefficient in the case when it is a piece-wise polynomial function. Several examples are elaborated and the numerical results confirm that the solution of the imbedding problem coincides with the direct simulation of the original problem within the second order of approximation.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2010.05.048</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2010-11, Vol.235 (2), p.450-459
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_787106178
source ScienceDirect Freedom Collection
subjects Approximation
Calculus of variations and optimal control
Coefficient identification
Coefficients
Computer simulation
Euler-Bernoulli equation
Exact sciences and technology
Imbeddings
Inverse problem
Inverse problems
Mathematical analysis
Mathematical models
Mathematics
Method of Variational Imbedding
Numerical analysis
Numerical analysis in abstract spaces
Numerical analysis. Scientific computation
Numerical methods in mathematical programming, optimization and calculus of variations
Numerical methods in optimization and calculus of variations
Optimization
Partial differential equations
Sciences and techniques of general use
title Coefficient identification in Euler–Bernoulli equation from over-posed data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coefficient%20identification%20in%20Euler%E2%80%93Bernoulli%20equation%20from%20over-posed%20data&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Marinov,%20Tchavdar%20T.&rft.date=2010-11-15&rft.volume=235&rft.issue=2&rft.spage=450&rft.epage=459&rft.pages=450-459&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2010.05.048&rft_dat=%3Cproquest_cross%3E787106178%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-32e28e611216c0f119710ca532c7aaef25d3a6258831b62882be02cf6f888d873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=787106178&rft_id=info:pmid/&rfr_iscdi=true