Loading…
Temporal relationship between nerve-stump-length-dependent changes in the autophosphorylation of a cyclic AMP-dependent protein kinase and the acetylcholine receptor content in skeletal muscle
The acetylcholine receptor (AChR) content and the autophosphorylation of the regulatory subunit of cyclic AMP-dependent protein kinase type II (R-II) were evaluated in rats soleus muscles at 24, 30 and 66 hr after surgical denervation by cutting the nerve at a short distance (short-nerve-stump) and...
Saved in:
Published in: | Neurochemical research 1988-12, Vol.13 (12), p.1125-1131 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The acetylcholine receptor (AChR) content and the autophosphorylation of the regulatory subunit of cyclic AMP-dependent protein kinase type II (R-II) were evaluated in rats soleus muscles at 24, 30 and 66 hr after surgical denervation by cutting the nerve at a short distance (short-nerve-stump) and at a long distance (long-nerve-stump) from the muscle. AChR content was based on the specific binding of [125I]alpha-bungarotoxin (BUTX); changes in the autophosphorylation of R-II were based upon the predominant in vitro 32P-phosphorylation of a 56-Kd soluble protein in cytosolic fractions of solei. The AChR content and the 32P-autophosphorylation of R-II were increased in samples from short-nerve-stump solei, but not from long-nerve-stump solei, after a denervation-time of 30 hr. This nerve-stump-length dependency indicates that the two denervation effects are not related to the immediate halt of impulse-evoked muscle contractility. Furthermore, the results show that alterations in the 32P-autophosphorylation of R-II occurred before, as well as whenever, increases in the AChR content were found. Speculatively, this temporal relationship may be significant with respect to the potential role of R-II in gene expression. |
---|---|
ISSN: | 0364-3190 1573-6903 |
DOI: | 10.1007/BF00971629 |