Loading…
Computational fluid dynamics modeling of rice husk combustion in a fluidised bed combustor
Computational fluid dynamics (CFD) modeling was carried out to determine the trajectories and residence time of burning rice husk particles in the fluidised bed combustor (FBC) at different secondary air flowrates. In FBC, the intra and extra-particle mass transfer resistance of the oxidising agent...
Saved in:
Published in: | Powder technology 2010-11, Vol.203 (2), p.331-347 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-574bcd5293ac9321a11e8ea8de8ebdf51999ac444a83e386e122b922b41bc1e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-574bcd5293ac9321a11e8ea8de8ebdf51999ac444a83e386e122b922b41bc1e93 |
container_end_page | 347 |
container_issue | 2 |
container_start_page | 331 |
container_title | Powder technology |
container_volume | 203 |
creator | Rozainee, M. Ngo, S.P. Salema, Arshad A. Tan, K.G. |
description | Computational fluid dynamics (CFD) modeling was carried out to determine the trajectories and residence time of burning rice husk particles in the fluidised bed combustor (FBC) at different secondary air flowrates. In FBC, the intra and extra-particle mass transfer resistance of the oxidising agent plays a major role in determining the combustion rate because of high temperature processing. Moreover, factors such as turbulence and retention time determine the reaction rate. In actual combustion experiments, these two factors could not be observed or determined distinctly, thereby hindering any further improvements in operating parameters or combustor design in order to maximise the efficiency of particle combustion. This hitch was solved through the application of (CFD) modeling. The modeling results offered significant insights into the trajectory and mass loss history of the rice husk particle combustion. The actual experimental results also showed agreement with the modeling results.
In actual combustion, the factors such as turbulence and retention time could not be determined distinctly, thereby hindering any improvement efforts to maximise the burning rate of biomass particles in the fluidised bed combustor. The CFD modeling offers significant insights into the trajectory and mass loss history of the burning rice husk particles, which otherwise is not possible experimentally.
[Display omitted] |
doi_str_mv | 10.1016/j.powtec.2010.05.026 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787115476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591010002779</els_id><sourcerecordid>787115476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-574bcd5293ac9321a11e8ea8de8ebdf51999ac444a83e386e122b922b41bc1e93</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw-5eeqaj34kF0EWv2DBi4J4CWky1axtU5NW2X9vlu7Zw8zAzPu8MC9Cl5SsKKHl9XY1-N8RzIqRtCLFirDyCC2oqHjGmXg7RgtCOMsKSckpOotxSwgpOSUL9L723TCNenS-1y1u2slZbHe97pyJuPMWWtd_YN_g4Azgzyl-YeO7eop7Arse6xlyESyuUx2uPpyjk0a3ES4Oc4le7-9e1o_Z5vnhaX27yQznYsyKKq-NLZjk2kjOqKYUBGhhU69tU1AppTZ5nmvBgYsSKGO1TJXT2lCQfImuZt8h-O8J4qg6Fw20re7BT1FVoqK0yKsyKfNZaYKPMUCjhuA6HXaKErVPUm3VnKTaJ6lIoVKSCbuZMUhf_DgIKhoHvQHrAphRWe_-N_gD5gyAEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787115476</pqid></control><display><type>article</type><title>Computational fluid dynamics modeling of rice husk combustion in a fluidised bed combustor</title><source>ScienceDirect Freedom Collection</source><creator>Rozainee, M. ; Ngo, S.P. ; Salema, Arshad A. ; Tan, K.G.</creator><creatorcontrib>Rozainee, M. ; Ngo, S.P. ; Salema, Arshad A. ; Tan, K.G.</creatorcontrib><description>Computational fluid dynamics (CFD) modeling was carried out to determine the trajectories and residence time of burning rice husk particles in the fluidised bed combustor (FBC) at different secondary air flowrates. In FBC, the intra and extra-particle mass transfer resistance of the oxidising agent plays a major role in determining the combustion rate because of high temperature processing. Moreover, factors such as turbulence and retention time determine the reaction rate. In actual combustion experiments, these two factors could not be observed or determined distinctly, thereby hindering any further improvements in operating parameters or combustor design in order to maximise the efficiency of particle combustion. This hitch was solved through the application of (CFD) modeling. The modeling results offered significant insights into the trajectory and mass loss history of the rice husk particle combustion. The actual experimental results also showed agreement with the modeling results.
In actual combustion, the factors such as turbulence and retention time could not be determined distinctly, thereby hindering any improvement efforts to maximise the burning rate of biomass particles in the fluidised bed combustor. The CFD modeling offers significant insights into the trajectory and mass loss history of the burning rice husk particles, which otherwise is not possible experimentally.
[Display omitted]</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2010.05.026</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Combustion ; Computational fluid dynamics ; Fluidised bed ; Oryza sativa ; Particle burnout ; Retention time ; Rice husk</subject><ispartof>Powder technology, 2010-11, Vol.203 (2), p.331-347</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-574bcd5293ac9321a11e8ea8de8ebdf51999ac444a83e386e122b922b41bc1e93</citedby><cites>FETCH-LOGICAL-c338t-574bcd5293ac9321a11e8ea8de8ebdf51999ac444a83e386e122b922b41bc1e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Rozainee, M.</creatorcontrib><creatorcontrib>Ngo, S.P.</creatorcontrib><creatorcontrib>Salema, Arshad A.</creatorcontrib><creatorcontrib>Tan, K.G.</creatorcontrib><title>Computational fluid dynamics modeling of rice husk combustion in a fluidised bed combustor</title><title>Powder technology</title><description>Computational fluid dynamics (CFD) modeling was carried out to determine the trajectories and residence time of burning rice husk particles in the fluidised bed combustor (FBC) at different secondary air flowrates. In FBC, the intra and extra-particle mass transfer resistance of the oxidising agent plays a major role in determining the combustion rate because of high temperature processing. Moreover, factors such as turbulence and retention time determine the reaction rate. In actual combustion experiments, these two factors could not be observed or determined distinctly, thereby hindering any further improvements in operating parameters or combustor design in order to maximise the efficiency of particle combustion. This hitch was solved through the application of (CFD) modeling. The modeling results offered significant insights into the trajectory and mass loss history of the rice husk particle combustion. The actual experimental results also showed agreement with the modeling results.
In actual combustion, the factors such as turbulence and retention time could not be determined distinctly, thereby hindering any improvement efforts to maximise the burning rate of biomass particles in the fluidised bed combustor. The CFD modeling offers significant insights into the trajectory and mass loss history of the burning rice husk particles, which otherwise is not possible experimentally.
[Display omitted]</description><subject>Combustion</subject><subject>Computational fluid dynamics</subject><subject>Fluidised bed</subject><subject>Oryza sativa</subject><subject>Particle burnout</subject><subject>Retention time</subject><subject>Rice husk</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw-5eeqaj34kF0EWv2DBi4J4CWky1axtU5NW2X9vlu7Zw8zAzPu8MC9Cl5SsKKHl9XY1-N8RzIqRtCLFirDyCC2oqHjGmXg7RgtCOMsKSckpOotxSwgpOSUL9L723TCNenS-1y1u2slZbHe97pyJuPMWWtd_YN_g4Azgzyl-YeO7eop7Arse6xlyESyuUx2uPpyjk0a3ES4Oc4le7-9e1o_Z5vnhaX27yQznYsyKKq-NLZjk2kjOqKYUBGhhU69tU1AppTZ5nmvBgYsSKGO1TJXT2lCQfImuZt8h-O8J4qg6Fw20re7BT1FVoqK0yKsyKfNZaYKPMUCjhuA6HXaKErVPUm3VnKTaJ6lIoVKSCbuZMUhf_DgIKhoHvQHrAphRWe_-N_gD5gyAEQ</recordid><startdate>20101110</startdate><enddate>20101110</enddate><creator>Rozainee, M.</creator><creator>Ngo, S.P.</creator><creator>Salema, Arshad A.</creator><creator>Tan, K.G.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20101110</creationdate><title>Computational fluid dynamics modeling of rice husk combustion in a fluidised bed combustor</title><author>Rozainee, M. ; Ngo, S.P. ; Salema, Arshad A. ; Tan, K.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-574bcd5293ac9321a11e8ea8de8ebdf51999ac444a83e386e122b922b41bc1e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Combustion</topic><topic>Computational fluid dynamics</topic><topic>Fluidised bed</topic><topic>Oryza sativa</topic><topic>Particle burnout</topic><topic>Retention time</topic><topic>Rice husk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rozainee, M.</creatorcontrib><creatorcontrib>Ngo, S.P.</creatorcontrib><creatorcontrib>Salema, Arshad A.</creatorcontrib><creatorcontrib>Tan, K.G.</creatorcontrib><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rozainee, M.</au><au>Ngo, S.P.</au><au>Salema, Arshad A.</au><au>Tan, K.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational fluid dynamics modeling of rice husk combustion in a fluidised bed combustor</atitle><jtitle>Powder technology</jtitle><date>2010-11-10</date><risdate>2010</risdate><volume>203</volume><issue>2</issue><spage>331</spage><epage>347</epage><pages>331-347</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><abstract>Computational fluid dynamics (CFD) modeling was carried out to determine the trajectories and residence time of burning rice husk particles in the fluidised bed combustor (FBC) at different secondary air flowrates. In FBC, the intra and extra-particle mass transfer resistance of the oxidising agent plays a major role in determining the combustion rate because of high temperature processing. Moreover, factors such as turbulence and retention time determine the reaction rate. In actual combustion experiments, these two factors could not be observed or determined distinctly, thereby hindering any further improvements in operating parameters or combustor design in order to maximise the efficiency of particle combustion. This hitch was solved through the application of (CFD) modeling. The modeling results offered significant insights into the trajectory and mass loss history of the rice husk particle combustion. The actual experimental results also showed agreement with the modeling results.
In actual combustion, the factors such as turbulence and retention time could not be determined distinctly, thereby hindering any improvement efforts to maximise the burning rate of biomass particles in the fluidised bed combustor. The CFD modeling offers significant insights into the trajectory and mass loss history of the burning rice husk particles, which otherwise is not possible experimentally.
[Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2010.05.026</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-5910 |
ispartof | Powder technology, 2010-11, Vol.203 (2), p.331-347 |
issn | 0032-5910 1873-328X |
language | eng |
recordid | cdi_proquest_miscellaneous_787115476 |
source | ScienceDirect Freedom Collection |
subjects | Combustion Computational fluid dynamics Fluidised bed Oryza sativa Particle burnout Retention time Rice husk |
title | Computational fluid dynamics modeling of rice husk combustion in a fluidised bed combustor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20fluid%20dynamics%20modeling%20of%20rice%20husk%20combustion%20in%20a%20fluidised%20bed%20combustor&rft.jtitle=Powder%20technology&rft.au=Rozainee,%20M.&rft.date=2010-11-10&rft.volume=203&rft.issue=2&rft.spage=331&rft.epage=347&rft.pages=331-347&rft.issn=0032-5910&rft.eissn=1873-328X&rft_id=info:doi/10.1016/j.powtec.2010.05.026&rft_dat=%3Cproquest_cross%3E787115476%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-574bcd5293ac9321a11e8ea8de8ebdf51999ac444a83e386e122b922b41bc1e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=787115476&rft_id=info:pmid/&rfr_iscdi=true |