Loading…

Computational fluid dynamics modeling of rice husk combustion in a fluidised bed combustor

Computational fluid dynamics (CFD) modeling was carried out to determine the trajectories and residence time of burning rice husk particles in the fluidised bed combustor (FBC) at different secondary air flowrates. In FBC, the intra and extra-particle mass transfer resistance of the oxidising agent...

Full description

Saved in:
Bibliographic Details
Published in:Powder technology 2010-11, Vol.203 (2), p.331-347
Main Authors: Rozainee, M., Ngo, S.P., Salema, Arshad A., Tan, K.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-574bcd5293ac9321a11e8ea8de8ebdf51999ac444a83e386e122b922b41bc1e93
cites cdi_FETCH-LOGICAL-c338t-574bcd5293ac9321a11e8ea8de8ebdf51999ac444a83e386e122b922b41bc1e93
container_end_page 347
container_issue 2
container_start_page 331
container_title Powder technology
container_volume 203
creator Rozainee, M.
Ngo, S.P.
Salema, Arshad A.
Tan, K.G.
description Computational fluid dynamics (CFD) modeling was carried out to determine the trajectories and residence time of burning rice husk particles in the fluidised bed combustor (FBC) at different secondary air flowrates. In FBC, the intra and extra-particle mass transfer resistance of the oxidising agent plays a major role in determining the combustion rate because of high temperature processing. Moreover, factors such as turbulence and retention time determine the reaction rate. In actual combustion experiments, these two factors could not be observed or determined distinctly, thereby hindering any further improvements in operating parameters or combustor design in order to maximise the efficiency of particle combustion. This hitch was solved through the application of (CFD) modeling. The modeling results offered significant insights into the trajectory and mass loss history of the rice husk particle combustion. The actual experimental results also showed agreement with the modeling results. In actual combustion, the factors such as turbulence and retention time could not be determined distinctly, thereby hindering any improvement efforts to maximise the burning rate of biomass particles in the fluidised bed combustor. The CFD modeling offers significant insights into the trajectory and mass loss history of the burning rice husk particles, which otherwise is not possible experimentally. [Display omitted]
doi_str_mv 10.1016/j.powtec.2010.05.026
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787115476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591010002779</els_id><sourcerecordid>787115476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-574bcd5293ac9321a11e8ea8de8ebdf51999ac444a83e386e122b922b41bc1e93</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw-5eeqaj34kF0EWv2DBi4J4CWky1axtU5NW2X9vlu7Zw8zAzPu8MC9Cl5SsKKHl9XY1-N8RzIqRtCLFirDyCC2oqHjGmXg7RgtCOMsKSckpOotxSwgpOSUL9L723TCNenS-1y1u2slZbHe97pyJuPMWWtd_YN_g4Azgzyl-YeO7eop7Arse6xlyESyuUx2uPpyjk0a3ES4Oc4le7-9e1o_Z5vnhaX27yQznYsyKKq-NLZjk2kjOqKYUBGhhU69tU1AppTZ5nmvBgYsSKGO1TJXT2lCQfImuZt8h-O8J4qg6Fw20re7BT1FVoqK0yKsyKfNZaYKPMUCjhuA6HXaKErVPUm3VnKTaJ6lIoVKSCbuZMUhf_DgIKhoHvQHrAphRWe_-N_gD5gyAEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787115476</pqid></control><display><type>article</type><title>Computational fluid dynamics modeling of rice husk combustion in a fluidised bed combustor</title><source>ScienceDirect Freedom Collection</source><creator>Rozainee, M. ; Ngo, S.P. ; Salema, Arshad A. ; Tan, K.G.</creator><creatorcontrib>Rozainee, M. ; Ngo, S.P. ; Salema, Arshad A. ; Tan, K.G.</creatorcontrib><description>Computational fluid dynamics (CFD) modeling was carried out to determine the trajectories and residence time of burning rice husk particles in the fluidised bed combustor (FBC) at different secondary air flowrates. In FBC, the intra and extra-particle mass transfer resistance of the oxidising agent plays a major role in determining the combustion rate because of high temperature processing. Moreover, factors such as turbulence and retention time determine the reaction rate. In actual combustion experiments, these two factors could not be observed or determined distinctly, thereby hindering any further improvements in operating parameters or combustor design in order to maximise the efficiency of particle combustion. This hitch was solved through the application of (CFD) modeling. The modeling results offered significant insights into the trajectory and mass loss history of the rice husk particle combustion. The actual experimental results also showed agreement with the modeling results. In actual combustion, the factors such as turbulence and retention time could not be determined distinctly, thereby hindering any improvement efforts to maximise the burning rate of biomass particles in the fluidised bed combustor. The CFD modeling offers significant insights into the trajectory and mass loss history of the burning rice husk particles, which otherwise is not possible experimentally. [Display omitted]</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2010.05.026</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Combustion ; Computational fluid dynamics ; Fluidised bed ; Oryza sativa ; Particle burnout ; Retention time ; Rice husk</subject><ispartof>Powder technology, 2010-11, Vol.203 (2), p.331-347</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-574bcd5293ac9321a11e8ea8de8ebdf51999ac444a83e386e122b922b41bc1e93</citedby><cites>FETCH-LOGICAL-c338t-574bcd5293ac9321a11e8ea8de8ebdf51999ac444a83e386e122b922b41bc1e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Rozainee, M.</creatorcontrib><creatorcontrib>Ngo, S.P.</creatorcontrib><creatorcontrib>Salema, Arshad A.</creatorcontrib><creatorcontrib>Tan, K.G.</creatorcontrib><title>Computational fluid dynamics modeling of rice husk combustion in a fluidised bed combustor</title><title>Powder technology</title><description>Computational fluid dynamics (CFD) modeling was carried out to determine the trajectories and residence time of burning rice husk particles in the fluidised bed combustor (FBC) at different secondary air flowrates. In FBC, the intra and extra-particle mass transfer resistance of the oxidising agent plays a major role in determining the combustion rate because of high temperature processing. Moreover, factors such as turbulence and retention time determine the reaction rate. In actual combustion experiments, these two factors could not be observed or determined distinctly, thereby hindering any further improvements in operating parameters or combustor design in order to maximise the efficiency of particle combustion. This hitch was solved through the application of (CFD) modeling. The modeling results offered significant insights into the trajectory and mass loss history of the rice husk particle combustion. The actual experimental results also showed agreement with the modeling results. In actual combustion, the factors such as turbulence and retention time could not be determined distinctly, thereby hindering any improvement efforts to maximise the burning rate of biomass particles in the fluidised bed combustor. The CFD modeling offers significant insights into the trajectory and mass loss history of the burning rice husk particles, which otherwise is not possible experimentally. [Display omitted]</description><subject>Combustion</subject><subject>Computational fluid dynamics</subject><subject>Fluidised bed</subject><subject>Oryza sativa</subject><subject>Particle burnout</subject><subject>Retention time</subject><subject>Rice husk</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw-5eeqaj34kF0EWv2DBi4J4CWky1axtU5NW2X9vlu7Zw8zAzPu8MC9Cl5SsKKHl9XY1-N8RzIqRtCLFirDyCC2oqHjGmXg7RgtCOMsKSckpOotxSwgpOSUL9L723TCNenS-1y1u2slZbHe97pyJuPMWWtd_YN_g4Azgzyl-YeO7eop7Arse6xlyESyuUx2uPpyjk0a3ES4Oc4le7-9e1o_Z5vnhaX27yQznYsyKKq-NLZjk2kjOqKYUBGhhU69tU1AppTZ5nmvBgYsSKGO1TJXT2lCQfImuZt8h-O8J4qg6Fw20re7BT1FVoqK0yKsyKfNZaYKPMUCjhuA6HXaKErVPUm3VnKTaJ6lIoVKSCbuZMUhf_DgIKhoHvQHrAphRWe_-N_gD5gyAEQ</recordid><startdate>20101110</startdate><enddate>20101110</enddate><creator>Rozainee, M.</creator><creator>Ngo, S.P.</creator><creator>Salema, Arshad A.</creator><creator>Tan, K.G.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20101110</creationdate><title>Computational fluid dynamics modeling of rice husk combustion in a fluidised bed combustor</title><author>Rozainee, M. ; Ngo, S.P. ; Salema, Arshad A. ; Tan, K.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-574bcd5293ac9321a11e8ea8de8ebdf51999ac444a83e386e122b922b41bc1e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Combustion</topic><topic>Computational fluid dynamics</topic><topic>Fluidised bed</topic><topic>Oryza sativa</topic><topic>Particle burnout</topic><topic>Retention time</topic><topic>Rice husk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rozainee, M.</creatorcontrib><creatorcontrib>Ngo, S.P.</creatorcontrib><creatorcontrib>Salema, Arshad A.</creatorcontrib><creatorcontrib>Tan, K.G.</creatorcontrib><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rozainee, M.</au><au>Ngo, S.P.</au><au>Salema, Arshad A.</au><au>Tan, K.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational fluid dynamics modeling of rice husk combustion in a fluidised bed combustor</atitle><jtitle>Powder technology</jtitle><date>2010-11-10</date><risdate>2010</risdate><volume>203</volume><issue>2</issue><spage>331</spage><epage>347</epage><pages>331-347</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><abstract>Computational fluid dynamics (CFD) modeling was carried out to determine the trajectories and residence time of burning rice husk particles in the fluidised bed combustor (FBC) at different secondary air flowrates. In FBC, the intra and extra-particle mass transfer resistance of the oxidising agent plays a major role in determining the combustion rate because of high temperature processing. Moreover, factors such as turbulence and retention time determine the reaction rate. In actual combustion experiments, these two factors could not be observed or determined distinctly, thereby hindering any further improvements in operating parameters or combustor design in order to maximise the efficiency of particle combustion. This hitch was solved through the application of (CFD) modeling. The modeling results offered significant insights into the trajectory and mass loss history of the rice husk particle combustion. The actual experimental results also showed agreement with the modeling results. In actual combustion, the factors such as turbulence and retention time could not be determined distinctly, thereby hindering any improvement efforts to maximise the burning rate of biomass particles in the fluidised bed combustor. The CFD modeling offers significant insights into the trajectory and mass loss history of the burning rice husk particles, which otherwise is not possible experimentally. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2010.05.026</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-5910
ispartof Powder technology, 2010-11, Vol.203 (2), p.331-347
issn 0032-5910
1873-328X
language eng
recordid cdi_proquest_miscellaneous_787115476
source ScienceDirect Freedom Collection
subjects Combustion
Computational fluid dynamics
Fluidised bed
Oryza sativa
Particle burnout
Retention time
Rice husk
title Computational fluid dynamics modeling of rice husk combustion in a fluidised bed combustor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20fluid%20dynamics%20modeling%20of%20rice%20husk%20combustion%20in%20a%20fluidised%20bed%20combustor&rft.jtitle=Powder%20technology&rft.au=Rozainee,%20M.&rft.date=2010-11-10&rft.volume=203&rft.issue=2&rft.spage=331&rft.epage=347&rft.pages=331-347&rft.issn=0032-5910&rft.eissn=1873-328X&rft_id=info:doi/10.1016/j.powtec.2010.05.026&rft_dat=%3Cproquest_cross%3E787115476%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-574bcd5293ac9321a11e8ea8de8ebdf51999ac444a83e386e122b922b41bc1e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=787115476&rft_id=info:pmid/&rfr_iscdi=true