Loading…

Full 3D spatially resolved mapping of residual strain in a 316L austenitic stainless steel weld specimen

A three-pass slot weld specimen in austenitic stainless steel 316L, manufactured for the purpose of benchmarking Finite Element weld residual stress simulation codes, is currently undergoing extensive characterization within a research network. A comprehensive data set from non-destructive full thre...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2010-07, Vol.527 (18-19), p.4779-4787
Main Authors: Martins, R.V., Ohms, C., Decroos, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A three-pass slot weld specimen in austenitic stainless steel 316L, manufactured for the purpose of benchmarking Finite Element weld residual stress simulation codes, is currently undergoing extensive characterization within a research network. A comprehensive data set from non-destructive full three-dimensional spatially resolved macro-strain mapping in this specimen is presented here. Focussed high-energy synchrotron radiation together with the spiral slit technique was used to obtain depth-resolved information about the variation of lattice parameters. A novel full-pattern analysis approach, based on the evaluation of distinct diffraction spots from individual grains, was developed. The results show high tensile transverse stresses within the bead deposited first. The maximum longitudinal stresses were found beneath the slot. Furthermore significant weld start- and stop-effects were observed. The validity of the results is discussed with respect to the possible impact of intergranular strains due to plastic deformation.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2010.03.110