Loading…
Elastic limit for surface step dislocation nucleation in face-centered cubic metals: Temperature and step height dependence
The influences of surface step state and temperature on the elastic limit for dislocation nucleation from a surface step were analyzed by means of atomic scale simulations in face-centered cubic metals. When varying the step height, two regimes were found: for smaller steps, local effects dominate,...
Saved in:
Published in: | Acta materialia 2010-07, Vol.58 (12), p.4182-4190 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The influences of surface step state and temperature on the elastic limit for dislocation nucleation from a surface step were analyzed by means of atomic scale simulations in face-centered cubic metals. When varying the step height, two regimes were found: for smaller steps, local effects dominate, whereas for larger steps, the stress concentration prevails. The differences observed for the elastic limit were correlated to relevant properties of the different potentials. Finally, for aluminum, the implication of the activation parameters in the nucleation strain was studied in greater detail. This study is particularly relevant to nanostructures, where plasticity is most often governed by dislocation nucleation rather than dislocation multiplication. |
---|---|
ISSN: | 1359-6454 1873-2453 |
DOI: | 10.1016/j.actamat.2010.04.009 |