Loading…

Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Device Engineering

We present a 18 mW fiber-coupled single-mode superluminescent diode with 85 nm bandwidth for application in optical coherence tomography (OCT). First, we describe the effect of quantum dot (QD) growth temperature on optical spectrum and gain, highlighting the need for the optimization of epitaxy for...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in quantum electronics 2010-07, Vol.16 (4), p.1015-1022
Main Authors: Greenwood, Purnima D L, Childs, David T D, Kennedy, Kenneth, Groom, Kristian M, Hugues, Maxime, Hopkinson, Mark, Hogg, Richard A, Krstajić, Nikola, Smith, L E, Matcher, S J, Bonesi, M, MacNeil, S, Smallwood, R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-d16712f689cce1de5aad4dfd585101bcc2f67185e1326fd628fc87e12d4f00c43
cites cdi_FETCH-LOGICAL-c371t-d16712f689cce1de5aad4dfd585101bcc2f67185e1326fd628fc87e12d4f00c43
container_end_page 1022
container_issue 4
container_start_page 1015
container_title IEEE journal of selected topics in quantum electronics
container_volume 16
creator Greenwood, Purnima D L
Childs, David T D
Kennedy, Kenneth
Groom, Kristian M
Hugues, Maxime
Hopkinson, Mark
Hogg, Richard A
Krstajić, Nikola
Smith, L E
Matcher, S J
Bonesi, M
MacNeil, S
Smallwood, R
description We present a 18 mW fiber-coupled single-mode superluminescent diode with 85 nm bandwidth for application in optical coherence tomography (OCT). First, we describe the effect of quantum dot (QD) growth temperature on optical spectrum and gain, highlighting the need for the optimization of epitaxy for broadband applications. Then, by incorporating this improved material into a multicontact device, we show how bandwidth and power can be controlled. We then go on to show how the spectral shape influences the autocorrelation function, which exhibits a coherence length of
doi_str_mv 10.1109/JSTQE.2009.2038720
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_787237261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5445054</ieee_id><sourcerecordid>787237261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-d16712f689cce1de5aad4dfd585101bcc2f67185e1326fd628fc87e12d4f00c43</originalsourceid><addsrcrecordid>eNpdkE9LwzAYh4soOKdfQC8BD546kzRpMm-yzX8MxtiE3UpM38xKm9SkFfbtzZx48JKEN8_v5ceTJJcEjwjB49uX1Xo5G1GMx_HIpKD4KBkQzmXKOKPH8Y2FSGmON6fJWQgfGGPJJB4km2WvbNc3aOo6tOpb8HXfVBaCBtuhaeVKCMg4jxZtV2lVo4l7Bw9WA1q7xm29at93d2gKX1Uczew2ZsFXdnuenBhVB7j4vYfJ68NsPXlK54vH58n9PNWZIF1aklwQanI51hpICVypkpWm5JITTN60jn-CSA4ko7kpcyqNlgIILZnBWLNsmNwc9rbeffYQuqKpYvm6VhZcHwoRZWSC5iSS1__ID9d7G8sVBFMhJBFMRooeKO1dCB5M0fqqUX4XoWLvuvhxXexdF7-uY-jqEKoA4C_AGeOYs-wbTxd7Qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027781748</pqid></control><display><type>article</type><title>Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Device Engineering</title><source>IEEE Xplore (Online service)</source><creator>Greenwood, Purnima D L ; Childs, David T D ; Kennedy, Kenneth ; Groom, Kristian M ; Hugues, Maxime ; Hopkinson, Mark ; Hogg, Richard A ; Krstajić, Nikola ; Smith, L E ; Matcher, S J ; Bonesi, M ; MacNeil, S ; Smallwood, R</creator><creatorcontrib>Greenwood, Purnima D L ; Childs, David T D ; Kennedy, Kenneth ; Groom, Kristian M ; Hugues, Maxime ; Hopkinson, Mark ; Hogg, Richard A ; Krstajić, Nikola ; Smith, L E ; Matcher, S J ; Bonesi, M ; MacNeil, S ; Smallwood, R</creatorcontrib><description>We present a 18 mW fiber-coupled single-mode superluminescent diode with 85 nm bandwidth for application in optical coherence tomography (OCT). First, we describe the effect of quantum dot (QD) growth temperature on optical spectrum and gain, highlighting the need for the optimization of epitaxy for broadband applications. Then, by incorporating this improved material into a multicontact device, we show how bandwidth and power can be controlled. We then go on to show how the spectral shape influences the autocorrelation function, which exhibits a coherence length of &lt;;11 μm, and relative noise is found to be 10 dB lower than that of a thermal source. Finally, we apply the optimum device to OCT of in vivo skin and show the improvement that can be made with higher power, wider bandwidth, and lower noise, respectively.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2009.2038720</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bandwidth ; Broadband ; Devices ; Epitaxial growth ; Noise ; Optical Coherence Tomography ; Optical coherence tomography (OCT) ; Optical devices ; Optical fiber devices ; Optical materials ; Optimization ; quantum dot (QD) ; Quantum dots ; skin imaging ; Spectral shape ; Superluminescent diodes ; superluminescent diodes (SLEDs) ; Surgical implants ; Temperature ; Tomography</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2010-07, Vol.16 (4), p.1015-1022</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul/Aug 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-d16712f689cce1de5aad4dfd585101bcc2f67185e1326fd628fc87e12d4f00c43</citedby><cites>FETCH-LOGICAL-c371t-d16712f689cce1de5aad4dfd585101bcc2f67185e1326fd628fc87e12d4f00c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5445054$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Greenwood, Purnima D L</creatorcontrib><creatorcontrib>Childs, David T D</creatorcontrib><creatorcontrib>Kennedy, Kenneth</creatorcontrib><creatorcontrib>Groom, Kristian M</creatorcontrib><creatorcontrib>Hugues, Maxime</creatorcontrib><creatorcontrib>Hopkinson, Mark</creatorcontrib><creatorcontrib>Hogg, Richard A</creatorcontrib><creatorcontrib>Krstajić, Nikola</creatorcontrib><creatorcontrib>Smith, L E</creatorcontrib><creatorcontrib>Matcher, S J</creatorcontrib><creatorcontrib>Bonesi, M</creatorcontrib><creatorcontrib>MacNeil, S</creatorcontrib><creatorcontrib>Smallwood, R</creatorcontrib><title>Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Device Engineering</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>We present a 18 mW fiber-coupled single-mode superluminescent diode with 85 nm bandwidth for application in optical coherence tomography (OCT). First, we describe the effect of quantum dot (QD) growth temperature on optical spectrum and gain, highlighting the need for the optimization of epitaxy for broadband applications. Then, by incorporating this improved material into a multicontact device, we show how bandwidth and power can be controlled. We then go on to show how the spectral shape influences the autocorrelation function, which exhibits a coherence length of &lt;;11 μm, and relative noise is found to be 10 dB lower than that of a thermal source. Finally, we apply the optimum device to OCT of in vivo skin and show the improvement that can be made with higher power, wider bandwidth, and lower noise, respectively.</description><subject>Bandwidth</subject><subject>Broadband</subject><subject>Devices</subject><subject>Epitaxial growth</subject><subject>Noise</subject><subject>Optical Coherence Tomography</subject><subject>Optical coherence tomography (OCT)</subject><subject>Optical devices</subject><subject>Optical fiber devices</subject><subject>Optical materials</subject><subject>Optimization</subject><subject>quantum dot (QD)</subject><subject>Quantum dots</subject><subject>skin imaging</subject><subject>Spectral shape</subject><subject>Superluminescent diodes</subject><subject>superluminescent diodes (SLEDs)</subject><subject>Surgical implants</subject><subject>Temperature</subject><subject>Tomography</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkE9LwzAYh4soOKdfQC8BD546kzRpMm-yzX8MxtiE3UpM38xKm9SkFfbtzZx48JKEN8_v5ceTJJcEjwjB49uX1Xo5G1GMx_HIpKD4KBkQzmXKOKPH8Y2FSGmON6fJWQgfGGPJJB4km2WvbNc3aOo6tOpb8HXfVBaCBtuhaeVKCMg4jxZtV2lVo4l7Bw9WA1q7xm29at93d2gKX1Uczew2ZsFXdnuenBhVB7j4vYfJ68NsPXlK54vH58n9PNWZIF1aklwQanI51hpICVypkpWm5JITTN60jn-CSA4ko7kpcyqNlgIILZnBWLNsmNwc9rbeffYQuqKpYvm6VhZcHwoRZWSC5iSS1__ID9d7G8sVBFMhJBFMRooeKO1dCB5M0fqqUX4XoWLvuvhxXexdF7-uY-jqEKoA4C_AGeOYs-wbTxd7Qg</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Greenwood, Purnima D L</creator><creator>Childs, David T D</creator><creator>Kennedy, Kenneth</creator><creator>Groom, Kristian M</creator><creator>Hugues, Maxime</creator><creator>Hopkinson, Mark</creator><creator>Hogg, Richard A</creator><creator>Krstajić, Nikola</creator><creator>Smith, L E</creator><creator>Matcher, S J</creator><creator>Bonesi, M</creator><creator>MacNeil, S</creator><creator>Smallwood, R</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201007</creationdate><title>Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Device Engineering</title><author>Greenwood, Purnima D L ; Childs, David T D ; Kennedy, Kenneth ; Groom, Kristian M ; Hugues, Maxime ; Hopkinson, Mark ; Hogg, Richard A ; Krstajić, Nikola ; Smith, L E ; Matcher, S J ; Bonesi, M ; MacNeil, S ; Smallwood, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-d16712f689cce1de5aad4dfd585101bcc2f67185e1326fd628fc87e12d4f00c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bandwidth</topic><topic>Broadband</topic><topic>Devices</topic><topic>Epitaxial growth</topic><topic>Noise</topic><topic>Optical Coherence Tomography</topic><topic>Optical coherence tomography (OCT)</topic><topic>Optical devices</topic><topic>Optical fiber devices</topic><topic>Optical materials</topic><topic>Optimization</topic><topic>quantum dot (QD)</topic><topic>Quantum dots</topic><topic>skin imaging</topic><topic>Spectral shape</topic><topic>Superluminescent diodes</topic><topic>superluminescent diodes (SLEDs)</topic><topic>Surgical implants</topic><topic>Temperature</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greenwood, Purnima D L</creatorcontrib><creatorcontrib>Childs, David T D</creatorcontrib><creatorcontrib>Kennedy, Kenneth</creatorcontrib><creatorcontrib>Groom, Kristian M</creatorcontrib><creatorcontrib>Hugues, Maxime</creatorcontrib><creatorcontrib>Hopkinson, Mark</creatorcontrib><creatorcontrib>Hogg, Richard A</creatorcontrib><creatorcontrib>Krstajić, Nikola</creatorcontrib><creatorcontrib>Smith, L E</creatorcontrib><creatorcontrib>Matcher, S J</creatorcontrib><creatorcontrib>Bonesi, M</creatorcontrib><creatorcontrib>MacNeil, S</creatorcontrib><creatorcontrib>Smallwood, R</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greenwood, Purnima D L</au><au>Childs, David T D</au><au>Kennedy, Kenneth</au><au>Groom, Kristian M</au><au>Hugues, Maxime</au><au>Hopkinson, Mark</au><au>Hogg, Richard A</au><au>Krstajić, Nikola</au><au>Smith, L E</au><au>Matcher, S J</au><au>Bonesi, M</au><au>MacNeil, S</au><au>Smallwood, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Device Engineering</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2010-07</date><risdate>2010</risdate><volume>16</volume><issue>4</issue><spage>1015</spage><epage>1022</epage><pages>1015-1022</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>We present a 18 mW fiber-coupled single-mode superluminescent diode with 85 nm bandwidth for application in optical coherence tomography (OCT). First, we describe the effect of quantum dot (QD) growth temperature on optical spectrum and gain, highlighting the need for the optimization of epitaxy for broadband applications. Then, by incorporating this improved material into a multicontact device, we show how bandwidth and power can be controlled. We then go on to show how the spectral shape influences the autocorrelation function, which exhibits a coherence length of &lt;;11 μm, and relative noise is found to be 10 dB lower than that of a thermal source. Finally, we apply the optimum device to OCT of in vivo skin and show the improvement that can be made with higher power, wider bandwidth, and lower noise, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2009.2038720</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2010-07, Vol.16 (4), p.1015-1022
issn 1077-260X
1558-4542
language eng
recordid cdi_proquest_miscellaneous_787237261
source IEEE Xplore (Online service)
subjects Bandwidth
Broadband
Devices
Epitaxial growth
Noise
Optical Coherence Tomography
Optical coherence tomography (OCT)
Optical devices
Optical fiber devices
Optical materials
Optimization
quantum dot (QD)
Quantum dots
skin imaging
Spectral shape
Superluminescent diodes
superluminescent diodes (SLEDs)
Surgical implants
Temperature
Tomography
title Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Device Engineering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A53%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Dot%20Superluminescent%20Diodes%20for%20Optical%20Coherence%20Tomography:%20Device%20Engineering&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Greenwood,%20Purnima%20D%20L&rft.date=2010-07&rft.volume=16&rft.issue=4&rft.spage=1015&rft.epage=1022&rft.pages=1015-1022&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2009.2038720&rft_dat=%3Cproquest_ieee_%3E787237261%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-d16712f689cce1de5aad4dfd585101bcc2f67185e1326fd628fc87e12d4f00c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1027781748&rft_id=info:pmid/&rft_ieee_id=5445054&rfr_iscdi=true