Loading…
Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Device Engineering
We present a 18 mW fiber-coupled single-mode superluminescent diode with 85 nm bandwidth for application in optical coherence tomography (OCT). First, we describe the effect of quantum dot (QD) growth temperature on optical spectrum and gain, highlighting the need for the optimization of epitaxy for...
Saved in:
Published in: | IEEE journal of selected topics in quantum electronics 2010-07, Vol.16 (4), p.1015-1022 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-d16712f689cce1de5aad4dfd585101bcc2f67185e1326fd628fc87e12d4f00c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-d16712f689cce1de5aad4dfd585101bcc2f67185e1326fd628fc87e12d4f00c43 |
container_end_page | 1022 |
container_issue | 4 |
container_start_page | 1015 |
container_title | IEEE journal of selected topics in quantum electronics |
container_volume | 16 |
creator | Greenwood, Purnima D L Childs, David T D Kennedy, Kenneth Groom, Kristian M Hugues, Maxime Hopkinson, Mark Hogg, Richard A Krstajić, Nikola Smith, L E Matcher, S J Bonesi, M MacNeil, S Smallwood, R |
description | We present a 18 mW fiber-coupled single-mode superluminescent diode with 85 nm bandwidth for application in optical coherence tomography (OCT). First, we describe the effect of quantum dot (QD) growth temperature on optical spectrum and gain, highlighting the need for the optimization of epitaxy for broadband applications. Then, by incorporating this improved material into a multicontact device, we show how bandwidth and power can be controlled. We then go on to show how the spectral shape influences the autocorrelation function, which exhibits a coherence length of |
doi_str_mv | 10.1109/JSTQE.2009.2038720 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_787237261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5445054</ieee_id><sourcerecordid>787237261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-d16712f689cce1de5aad4dfd585101bcc2f67185e1326fd628fc87e12d4f00c43</originalsourceid><addsrcrecordid>eNpdkE9LwzAYh4soOKdfQC8BD546kzRpMm-yzX8MxtiE3UpM38xKm9SkFfbtzZx48JKEN8_v5ceTJJcEjwjB49uX1Xo5G1GMx_HIpKD4KBkQzmXKOKPH8Y2FSGmON6fJWQgfGGPJJB4km2WvbNc3aOo6tOpb8HXfVBaCBtuhaeVKCMg4jxZtV2lVo4l7Bw9WA1q7xm29at93d2gKX1Uczew2ZsFXdnuenBhVB7j4vYfJ68NsPXlK54vH58n9PNWZIF1aklwQanI51hpICVypkpWm5JITTN60jn-CSA4ko7kpcyqNlgIILZnBWLNsmNwc9rbeffYQuqKpYvm6VhZcHwoRZWSC5iSS1__ID9d7G8sVBFMhJBFMRooeKO1dCB5M0fqqUX4XoWLvuvhxXexdF7-uY-jqEKoA4C_AGeOYs-wbTxd7Qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027781748</pqid></control><display><type>article</type><title>Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Device Engineering</title><source>IEEE Xplore (Online service)</source><creator>Greenwood, Purnima D L ; Childs, David T D ; Kennedy, Kenneth ; Groom, Kristian M ; Hugues, Maxime ; Hopkinson, Mark ; Hogg, Richard A ; Krstajić, Nikola ; Smith, L E ; Matcher, S J ; Bonesi, M ; MacNeil, S ; Smallwood, R</creator><creatorcontrib>Greenwood, Purnima D L ; Childs, David T D ; Kennedy, Kenneth ; Groom, Kristian M ; Hugues, Maxime ; Hopkinson, Mark ; Hogg, Richard A ; Krstajić, Nikola ; Smith, L E ; Matcher, S J ; Bonesi, M ; MacNeil, S ; Smallwood, R</creatorcontrib><description>We present a 18 mW fiber-coupled single-mode superluminescent diode with 85 nm bandwidth for application in optical coherence tomography (OCT). First, we describe the effect of quantum dot (QD) growth temperature on optical spectrum and gain, highlighting the need for the optimization of epitaxy for broadband applications. Then, by incorporating this improved material into a multicontact device, we show how bandwidth and power can be controlled. We then go on to show how the spectral shape influences the autocorrelation function, which exhibits a coherence length of <;11 μm, and relative noise is found to be 10 dB lower than that of a thermal source. Finally, we apply the optimum device to OCT of in vivo skin and show the improvement that can be made with higher power, wider bandwidth, and lower noise, respectively.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2009.2038720</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bandwidth ; Broadband ; Devices ; Epitaxial growth ; Noise ; Optical Coherence Tomography ; Optical coherence tomography (OCT) ; Optical devices ; Optical fiber devices ; Optical materials ; Optimization ; quantum dot (QD) ; Quantum dots ; skin imaging ; Spectral shape ; Superluminescent diodes ; superluminescent diodes (SLEDs) ; Surgical implants ; Temperature ; Tomography</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2010-07, Vol.16 (4), p.1015-1022</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul/Aug 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-d16712f689cce1de5aad4dfd585101bcc2f67185e1326fd628fc87e12d4f00c43</citedby><cites>FETCH-LOGICAL-c371t-d16712f689cce1de5aad4dfd585101bcc2f67185e1326fd628fc87e12d4f00c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5445054$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Greenwood, Purnima D L</creatorcontrib><creatorcontrib>Childs, David T D</creatorcontrib><creatorcontrib>Kennedy, Kenneth</creatorcontrib><creatorcontrib>Groom, Kristian M</creatorcontrib><creatorcontrib>Hugues, Maxime</creatorcontrib><creatorcontrib>Hopkinson, Mark</creatorcontrib><creatorcontrib>Hogg, Richard A</creatorcontrib><creatorcontrib>Krstajić, Nikola</creatorcontrib><creatorcontrib>Smith, L E</creatorcontrib><creatorcontrib>Matcher, S J</creatorcontrib><creatorcontrib>Bonesi, M</creatorcontrib><creatorcontrib>MacNeil, S</creatorcontrib><creatorcontrib>Smallwood, R</creatorcontrib><title>Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Device Engineering</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>We present a 18 mW fiber-coupled single-mode superluminescent diode with 85 nm bandwidth for application in optical coherence tomography (OCT). First, we describe the effect of quantum dot (QD) growth temperature on optical spectrum and gain, highlighting the need for the optimization of epitaxy for broadband applications. Then, by incorporating this improved material into a multicontact device, we show how bandwidth and power can be controlled. We then go on to show how the spectral shape influences the autocorrelation function, which exhibits a coherence length of <;11 μm, and relative noise is found to be 10 dB lower than that of a thermal source. Finally, we apply the optimum device to OCT of in vivo skin and show the improvement that can be made with higher power, wider bandwidth, and lower noise, respectively.</description><subject>Bandwidth</subject><subject>Broadband</subject><subject>Devices</subject><subject>Epitaxial growth</subject><subject>Noise</subject><subject>Optical Coherence Tomography</subject><subject>Optical coherence tomography (OCT)</subject><subject>Optical devices</subject><subject>Optical fiber devices</subject><subject>Optical materials</subject><subject>Optimization</subject><subject>quantum dot (QD)</subject><subject>Quantum dots</subject><subject>skin imaging</subject><subject>Spectral shape</subject><subject>Superluminescent diodes</subject><subject>superluminescent diodes (SLEDs)</subject><subject>Surgical implants</subject><subject>Temperature</subject><subject>Tomography</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkE9LwzAYh4soOKdfQC8BD546kzRpMm-yzX8MxtiE3UpM38xKm9SkFfbtzZx48JKEN8_v5ceTJJcEjwjB49uX1Xo5G1GMx_HIpKD4KBkQzmXKOKPH8Y2FSGmON6fJWQgfGGPJJB4km2WvbNc3aOo6tOpb8HXfVBaCBtuhaeVKCMg4jxZtV2lVo4l7Bw9WA1q7xm29at93d2gKX1Uczew2ZsFXdnuenBhVB7j4vYfJ68NsPXlK54vH58n9PNWZIF1aklwQanI51hpICVypkpWm5JITTN60jn-CSA4ko7kpcyqNlgIILZnBWLNsmNwc9rbeffYQuqKpYvm6VhZcHwoRZWSC5iSS1__ID9d7G8sVBFMhJBFMRooeKO1dCB5M0fqqUX4XoWLvuvhxXexdF7-uY-jqEKoA4C_AGeOYs-wbTxd7Qg</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Greenwood, Purnima D L</creator><creator>Childs, David T D</creator><creator>Kennedy, Kenneth</creator><creator>Groom, Kristian M</creator><creator>Hugues, Maxime</creator><creator>Hopkinson, Mark</creator><creator>Hogg, Richard A</creator><creator>Krstajić, Nikola</creator><creator>Smith, L E</creator><creator>Matcher, S J</creator><creator>Bonesi, M</creator><creator>MacNeil, S</creator><creator>Smallwood, R</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201007</creationdate><title>Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Device Engineering</title><author>Greenwood, Purnima D L ; Childs, David T D ; Kennedy, Kenneth ; Groom, Kristian M ; Hugues, Maxime ; Hopkinson, Mark ; Hogg, Richard A ; Krstajić, Nikola ; Smith, L E ; Matcher, S J ; Bonesi, M ; MacNeil, S ; Smallwood, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-d16712f689cce1de5aad4dfd585101bcc2f67185e1326fd628fc87e12d4f00c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bandwidth</topic><topic>Broadband</topic><topic>Devices</topic><topic>Epitaxial growth</topic><topic>Noise</topic><topic>Optical Coherence Tomography</topic><topic>Optical coherence tomography (OCT)</topic><topic>Optical devices</topic><topic>Optical fiber devices</topic><topic>Optical materials</topic><topic>Optimization</topic><topic>quantum dot (QD)</topic><topic>Quantum dots</topic><topic>skin imaging</topic><topic>Spectral shape</topic><topic>Superluminescent diodes</topic><topic>superluminescent diodes (SLEDs)</topic><topic>Surgical implants</topic><topic>Temperature</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greenwood, Purnima D L</creatorcontrib><creatorcontrib>Childs, David T D</creatorcontrib><creatorcontrib>Kennedy, Kenneth</creatorcontrib><creatorcontrib>Groom, Kristian M</creatorcontrib><creatorcontrib>Hugues, Maxime</creatorcontrib><creatorcontrib>Hopkinson, Mark</creatorcontrib><creatorcontrib>Hogg, Richard A</creatorcontrib><creatorcontrib>Krstajić, Nikola</creatorcontrib><creatorcontrib>Smith, L E</creatorcontrib><creatorcontrib>Matcher, S J</creatorcontrib><creatorcontrib>Bonesi, M</creatorcontrib><creatorcontrib>MacNeil, S</creatorcontrib><creatorcontrib>Smallwood, R</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greenwood, Purnima D L</au><au>Childs, David T D</au><au>Kennedy, Kenneth</au><au>Groom, Kristian M</au><au>Hugues, Maxime</au><au>Hopkinson, Mark</au><au>Hogg, Richard A</au><au>Krstajić, Nikola</au><au>Smith, L E</au><au>Matcher, S J</au><au>Bonesi, M</au><au>MacNeil, S</au><au>Smallwood, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Device Engineering</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2010-07</date><risdate>2010</risdate><volume>16</volume><issue>4</issue><spage>1015</spage><epage>1022</epage><pages>1015-1022</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>We present a 18 mW fiber-coupled single-mode superluminescent diode with 85 nm bandwidth for application in optical coherence tomography (OCT). First, we describe the effect of quantum dot (QD) growth temperature on optical spectrum and gain, highlighting the need for the optimization of epitaxy for broadband applications. Then, by incorporating this improved material into a multicontact device, we show how bandwidth and power can be controlled. We then go on to show how the spectral shape influences the autocorrelation function, which exhibits a coherence length of <;11 μm, and relative noise is found to be 10 dB lower than that of a thermal source. Finally, we apply the optimum device to OCT of in vivo skin and show the improvement that can be made with higher power, wider bandwidth, and lower noise, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2009.2038720</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-260X |
ispartof | IEEE journal of selected topics in quantum electronics, 2010-07, Vol.16 (4), p.1015-1022 |
issn | 1077-260X 1558-4542 |
language | eng |
recordid | cdi_proquest_miscellaneous_787237261 |
source | IEEE Xplore (Online service) |
subjects | Bandwidth Broadband Devices Epitaxial growth Noise Optical Coherence Tomography Optical coherence tomography (OCT) Optical devices Optical fiber devices Optical materials Optimization quantum dot (QD) Quantum dots skin imaging Spectral shape Superluminescent diodes superluminescent diodes (SLEDs) Surgical implants Temperature Tomography |
title | Quantum Dot Superluminescent Diodes for Optical Coherence Tomography: Device Engineering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A53%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Dot%20Superluminescent%20Diodes%20for%20Optical%20Coherence%20Tomography:%20Device%20Engineering&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Greenwood,%20Purnima%20D%20L&rft.date=2010-07&rft.volume=16&rft.issue=4&rft.spage=1015&rft.epage=1022&rft.pages=1015-1022&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2009.2038720&rft_dat=%3Cproquest_ieee_%3E787237261%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-d16712f689cce1de5aad4dfd585101bcc2f67185e1326fd628fc87e12d4f00c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1027781748&rft_id=info:pmid/&rft_ieee_id=5445054&rfr_iscdi=true |