Loading…
Network based real-time precise point positioning
Network based real-time precise point positioning system includes two stages, i.e. real-time estimation of satellite clocks based on a reference network and real-time precise point positioning thereafter. In this paper, a satellite- and epoch-differenced approach, adopted from what is introduced by...
Saved in:
Published in: | Advances in space research 2010-11, Vol.46 (9), p.1218-1224 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Network based real-time precise point positioning system includes two stages, i.e. real-time estimation of satellite clocks based on a reference network and real-time precise point positioning thereafter. In this paper, a satellite- and epoch-differenced approach, adopted from what is introduced by
Han et al. (2001), is presented for the determination of satellite clocks and for the precise point positioning. One important refinement of our approach is the implementation of the robust clock estimation. A prototype software system is developed, and data from the European Reference Frame Permanent Network on September 19, 2009 is used to evaluate the approach. Results show that our approach is 3 times and 90 times faster than the epoch-difference approach and the zero-difference approach, respectively, which demonstrates a significant improvement in the computation efficiency. The RMS of the estimated clocks is at the level of 0.1
ns (3
cm) compared to the IGS final clocks. The clocks estimates are then applied to the precise point positioning in both kinematic and static mode. In static mode, the 2-h estimated coordinates have a mean accuracy of 3.08, 5.79, 6.32
cm in the North, East and Up directions. In kinematic mode, the mean kinematic coordinates accuracy is of 4.63, 5.82, 9.20
cm. |
---|---|
ISSN: | 0273-1177 1879-1948 |
DOI: | 10.1016/j.asr.2010.06.015 |