Loading…
Microstructural characterization of thin SiO x films obtained by physical vapor deposition
X-ray diffraction and reflectivity, X-ray photoelectron spectroscopy and spectroscopic ellipsometry were applied to study the initial composition, thickness, lattice structure and refractive index of ‘fresh’ and annealed thin SiO x films (∼15 nm) on crystalline silicon substrates, prepared by therma...
Saved in:
Published in: | Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2010-10, Vol.174 (1), p.132-136 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 136 |
container_issue | 1 |
container_start_page | 132 |
container_title | Materials science & engineering. B, Solid-state materials for advanced technology |
container_volume | 174 |
creator | Curiel, M.A. Nedev, N. Nesheva, D. Soares, J. Haasch, R. Sardela, M. Valdez, B. Sankaran, B. Manolov, E. Bineva, I. Petrov, I. |
description | X-ray diffraction and reflectivity, X-ray photoelectron spectroscopy and spectroscopic ellipsometry were applied to study the initial composition, thickness, lattice structure and refractive index of ‘fresh’ and annealed thin SiO
x
films (∼15
nm) on crystalline silicon substrates, prepared by thermal evaporation of SiO in vacuum. It has been ascertained that the film thickness and composition (
x
=
1.3) of the ‘fresh’ films are very close to the values set during the deposition. It has been shown that furnace annealing of the films at 1000
°C causes phase separation, film densification and small modification of the Si–SiO
x
interface. Transmission electron microscopy results have proven that a self-assembling process leads to formation of Si nanocrystals with a diameter of ∼4–5
nm and to epitaxial overgrowth of the Si substrate, increasing the c-Si/SiO
x
interface transition region to 6–7 monolayers. The nanocrystals are randomly distributed in an amorphous SiO
2 matrix being closer to the Si–SiO
x
interface. Formation of tunnel oxide layer with a thickness of 3–5
nm has been found upon annealing. Clockwise hysteresis has been observed in the capacitance-voltage characteristics measured which has been explained by assuming charging and discharging of the nanocrystals with holes, which tunnel from the Si substrate. |
doi_str_mv | 10.1016/j.mseb.2010.03.007 |
format | article |
fullrecord | <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_miscellaneous_787266771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921510710001534</els_id><sourcerecordid>787266771</sourcerecordid><originalsourceid>FETCH-LOGICAL-e1181-851569b67bea8994ee8e586be7dbd04d3b31b79b7a8c6c754ba65b5902e1ae753</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFV2upmam5k8BtyI-IJKF-rGTUgytzRlOqnJVKy_3hl07erC4TuHy0fIObAZMJBX69kmo5txNgSsnDGmDsgEtCqLqq6qQzJhNYdCAFPH5CTnNWMMOOcT8v4cfIq5Tzvf75JtqV_ZZH2PKXzbPsSOxiXtV6GjL2FBv-gytJtMo-tt6LChbk-3q30Ofmh-2m1MtMFtzGFsnpKjpW0znv3dKXm7v3u9fSzmi4en25t5gQAaCi1AyNpJ5dDquq4QNQotHarGNaxqSleCU7VTVnvplaiclcKJmnEEi0qUU3Lxu7tN8WOHuTebkD22re0w7rJRWnEplYKBvPyXBCU5cFHrEb3-RXH4_DNgMtkH7Dw2IaHvTRODAWZG-WZtRvlmlG9YaQb55Q-tA3q3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762125981</pqid></control><display><type>article</type><title>Microstructural characterization of thin SiO x films obtained by physical vapor deposition</title><source>ScienceDirect Journals</source><creator>Curiel, M.A. ; Nedev, N. ; Nesheva, D. ; Soares, J. ; Haasch, R. ; Sardela, M. ; Valdez, B. ; Sankaran, B. ; Manolov, E. ; Bineva, I. ; Petrov, I.</creator><creatorcontrib>Curiel, M.A. ; Nedev, N. ; Nesheva, D. ; Soares, J. ; Haasch, R. ; Sardela, M. ; Valdez, B. ; Sankaran, B. ; Manolov, E. ; Bineva, I. ; Petrov, I.</creatorcontrib><description>X-ray diffraction and reflectivity, X-ray photoelectron spectroscopy and spectroscopic ellipsometry were applied to study the initial composition, thickness, lattice structure and refractive index of ‘fresh’ and annealed thin SiO
x
films (∼15
nm) on crystalline silicon substrates, prepared by thermal evaporation of SiO in vacuum. It has been ascertained that the film thickness and composition (
x
=
1.3) of the ‘fresh’ films are very close to the values set during the deposition. It has been shown that furnace annealing of the films at 1000
°C causes phase separation, film densification and small modification of the Si–SiO
x
interface. Transmission electron microscopy results have proven that a self-assembling process leads to formation of Si nanocrystals with a diameter of ∼4–5
nm and to epitaxial overgrowth of the Si substrate, increasing the c-Si/SiO
x
interface transition region to 6–7 monolayers. The nanocrystals are randomly distributed in an amorphous SiO
2 matrix being closer to the Si–SiO
x
interface. Formation of tunnel oxide layer with a thickness of 3–5
nm has been found upon annealing. Clockwise hysteresis has been observed in the capacitance-voltage characteristics measured which has been explained by assuming charging and discharging of the nanocrystals with holes, which tunnel from the Si substrate.</description><identifier>ISSN: 0921-5107</identifier><identifier>EISSN: 1873-4944</identifier><identifier>DOI: 10.1016/j.mseb.2010.03.007</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Annealing ; Materials science ; Metal–insulator–semiconductor structures ; Nanocrystals ; Phase separation ; Silicon dioxide ; Silicon nanocrystals ; Silicon oxide ; Silicon substrates ; Thermal evaporation ; Thin films ; Transmission electron microscopy ; Tunnels (transportation) ; X-ray spectroscopy ; X-rays</subject><ispartof>Materials science & engineering. B, Solid-state materials for advanced technology, 2010-10, Vol.174 (1), p.132-136</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Curiel, M.A.</creatorcontrib><creatorcontrib>Nedev, N.</creatorcontrib><creatorcontrib>Nesheva, D.</creatorcontrib><creatorcontrib>Soares, J.</creatorcontrib><creatorcontrib>Haasch, R.</creatorcontrib><creatorcontrib>Sardela, M.</creatorcontrib><creatorcontrib>Valdez, B.</creatorcontrib><creatorcontrib>Sankaran, B.</creatorcontrib><creatorcontrib>Manolov, E.</creatorcontrib><creatorcontrib>Bineva, I.</creatorcontrib><creatorcontrib>Petrov, I.</creatorcontrib><title>Microstructural characterization of thin SiO x films obtained by physical vapor deposition</title><title>Materials science & engineering. B, Solid-state materials for advanced technology</title><description>X-ray diffraction and reflectivity, X-ray photoelectron spectroscopy and spectroscopic ellipsometry were applied to study the initial composition, thickness, lattice structure and refractive index of ‘fresh’ and annealed thin SiO
x
films (∼15
nm) on crystalline silicon substrates, prepared by thermal evaporation of SiO in vacuum. It has been ascertained that the film thickness and composition (
x
=
1.3) of the ‘fresh’ films are very close to the values set during the deposition. It has been shown that furnace annealing of the films at 1000
°C causes phase separation, film densification and small modification of the Si–SiO
x
interface. Transmission electron microscopy results have proven that a self-assembling process leads to formation of Si nanocrystals with a diameter of ∼4–5
nm and to epitaxial overgrowth of the Si substrate, increasing the c-Si/SiO
x
interface transition region to 6–7 monolayers. The nanocrystals are randomly distributed in an amorphous SiO
2 matrix being closer to the Si–SiO
x
interface. Formation of tunnel oxide layer with a thickness of 3–5
nm has been found upon annealing. Clockwise hysteresis has been observed in the capacitance-voltage characteristics measured which has been explained by assuming charging and discharging of the nanocrystals with holes, which tunnel from the Si substrate.</description><subject>Annealing</subject><subject>Materials science</subject><subject>Metal–insulator–semiconductor structures</subject><subject>Nanocrystals</subject><subject>Phase separation</subject><subject>Silicon dioxide</subject><subject>Silicon nanocrystals</subject><subject>Silicon oxide</subject><subject>Silicon substrates</subject><subject>Thermal evaporation</subject><subject>Thin films</subject><subject>Transmission electron microscopy</subject><subject>Tunnels (transportation)</subject><subject>X-ray spectroscopy</subject><subject>X-rays</subject><issn>0921-5107</issn><issn>1873-4944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFV2upmam5k8BtyI-IJKF-rGTUgytzRlOqnJVKy_3hl07erC4TuHy0fIObAZMJBX69kmo5txNgSsnDGmDsgEtCqLqq6qQzJhNYdCAFPH5CTnNWMMOOcT8v4cfIq5Tzvf75JtqV_ZZH2PKXzbPsSOxiXtV6GjL2FBv-gytJtMo-tt6LChbk-3q30Ofmh-2m1MtMFtzGFsnpKjpW0znv3dKXm7v3u9fSzmi4en25t5gQAaCi1AyNpJ5dDquq4QNQotHarGNaxqSleCU7VTVnvplaiclcKJmnEEi0qUU3Lxu7tN8WOHuTebkD22re0w7rJRWnEplYKBvPyXBCU5cFHrEb3-RXH4_DNgMtkH7Dw2IaHvTRODAWZG-WZtRvlmlG9YaQb55Q-tA3q3</recordid><startdate>20101025</startdate><enddate>20101025</enddate><creator>Curiel, M.A.</creator><creator>Nedev, N.</creator><creator>Nesheva, D.</creator><creator>Soares, J.</creator><creator>Haasch, R.</creator><creator>Sardela, M.</creator><creator>Valdez, B.</creator><creator>Sankaran, B.</creator><creator>Manolov, E.</creator><creator>Bineva, I.</creator><creator>Petrov, I.</creator><general>Elsevier B.V</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101025</creationdate><title>Microstructural characterization of thin SiO x films obtained by physical vapor deposition</title><author>Curiel, M.A. ; Nedev, N. ; Nesheva, D. ; Soares, J. ; Haasch, R. ; Sardela, M. ; Valdez, B. ; Sankaran, B. ; Manolov, E. ; Bineva, I. ; Petrov, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e1181-851569b67bea8994ee8e586be7dbd04d3b31b79b7a8c6c754ba65b5902e1ae753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Annealing</topic><topic>Materials science</topic><topic>Metal–insulator–semiconductor structures</topic><topic>Nanocrystals</topic><topic>Phase separation</topic><topic>Silicon dioxide</topic><topic>Silicon nanocrystals</topic><topic>Silicon oxide</topic><topic>Silicon substrates</topic><topic>Thermal evaporation</topic><topic>Thin films</topic><topic>Transmission electron microscopy</topic><topic>Tunnels (transportation)</topic><topic>X-ray spectroscopy</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curiel, M.A.</creatorcontrib><creatorcontrib>Nedev, N.</creatorcontrib><creatorcontrib>Nesheva, D.</creatorcontrib><creatorcontrib>Soares, J.</creatorcontrib><creatorcontrib>Haasch, R.</creatorcontrib><creatorcontrib>Sardela, M.</creatorcontrib><creatorcontrib>Valdez, B.</creatorcontrib><creatorcontrib>Sankaran, B.</creatorcontrib><creatorcontrib>Manolov, E.</creatorcontrib><creatorcontrib>Bineva, I.</creatorcontrib><creatorcontrib>Petrov, I.</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science & engineering. B, Solid-state materials for advanced technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curiel, M.A.</au><au>Nedev, N.</au><au>Nesheva, D.</au><au>Soares, J.</au><au>Haasch, R.</au><au>Sardela, M.</au><au>Valdez, B.</au><au>Sankaran, B.</au><au>Manolov, E.</au><au>Bineva, I.</au><au>Petrov, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural characterization of thin SiO x films obtained by physical vapor deposition</atitle><jtitle>Materials science & engineering. B, Solid-state materials for advanced technology</jtitle><date>2010-10-25</date><risdate>2010</risdate><volume>174</volume><issue>1</issue><spage>132</spage><epage>136</epage><pages>132-136</pages><issn>0921-5107</issn><eissn>1873-4944</eissn><abstract>X-ray diffraction and reflectivity, X-ray photoelectron spectroscopy and spectroscopic ellipsometry were applied to study the initial composition, thickness, lattice structure and refractive index of ‘fresh’ and annealed thin SiO
x
films (∼15
nm) on crystalline silicon substrates, prepared by thermal evaporation of SiO in vacuum. It has been ascertained that the film thickness and composition (
x
=
1.3) of the ‘fresh’ films are very close to the values set during the deposition. It has been shown that furnace annealing of the films at 1000
°C causes phase separation, film densification and small modification of the Si–SiO
x
interface. Transmission electron microscopy results have proven that a self-assembling process leads to formation of Si nanocrystals with a diameter of ∼4–5
nm and to epitaxial overgrowth of the Si substrate, increasing the c-Si/SiO
x
interface transition region to 6–7 monolayers. The nanocrystals are randomly distributed in an amorphous SiO
2 matrix being closer to the Si–SiO
x
interface. Formation of tunnel oxide layer with a thickness of 3–5
nm has been found upon annealing. Clockwise hysteresis has been observed in the capacitance-voltage characteristics measured which has been explained by assuming charging and discharging of the nanocrystals with holes, which tunnel from the Si substrate.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.mseb.2010.03.007</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5107 |
ispartof | Materials science & engineering. B, Solid-state materials for advanced technology, 2010-10, Vol.174 (1), p.132-136 |
issn | 0921-5107 1873-4944 |
language | eng |
recordid | cdi_proquest_miscellaneous_787266771 |
source | ScienceDirect Journals |
subjects | Annealing Materials science Metal–insulator–semiconductor structures Nanocrystals Phase separation Silicon dioxide Silicon nanocrystals Silicon oxide Silicon substrates Thermal evaporation Thin films Transmission electron microscopy Tunnels (transportation) X-ray spectroscopy X-rays |
title | Microstructural characterization of thin SiO x films obtained by physical vapor deposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20characterization%20of%20thin%20SiO%20x%20films%20obtained%20by%20physical%20vapor%20deposition&rft.jtitle=Materials%20science%20&%20engineering.%20B,%20Solid-state%20materials%20for%20advanced%20technology&rft.au=Curiel,%20M.A.&rft.date=2010-10-25&rft.volume=174&rft.issue=1&rft.spage=132&rft.epage=136&rft.pages=132-136&rft.issn=0921-5107&rft.eissn=1873-4944&rft_id=info:doi/10.1016/j.mseb.2010.03.007&rft_dat=%3Cproquest_elsev%3E787266771%3C/proquest_elsev%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e1181-851569b67bea8994ee8e586be7dbd04d3b31b79b7a8c6c754ba65b5902e1ae753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762125981&rft_id=info:pmid/&rfr_iscdi=true |