Loading…
The time-dependent reduction of sliding cohesion due to rock bridges along discontinuities: A fracture mechanics approach
In this paper, a fracture mechanics model is developed to illustrate the importance of time-dependence for brittle fractured rock. In particular a model is developed for the time-dependent degradation of rock joint cohesion. Degradation of joint cohesion is modeled as the time-dependent breaking of...
Saved in:
Published in: | Rock mechanics and rock engineering 2003, Vol.36 (1), p.27-38 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a fracture mechanics model is developed to illustrate the importance of time-dependence for brittle fractured rock. In particular a model is developed for the time-dependent degradation of rock joint cohesion. Degradation of joint cohesion is modeled as the time-dependent breaking of intact patches or rock bridges along the joint surface. A fracture mechanics model is developed utilizing subcritical crack growth, which results in a closed-form solution for joint cohesion as a function of time. As an example, a rock block containing rock bridges subjected to plane sliding is analyzed. The cohesion is found to continually decrease, at first slowly and then more rapidly. At a particular value of time the cohesion reduces to value that results in slope instability. A second example is given where variations in some of the material parameters are assumed. A probabilistic slope analysis is conducted, and the probability of failure as a function of time is predicted. The probability of failure is found to increase with time, from an initial value of 5% to a value at 100 years of over 40%. These examples show the importance of being able to predict the time-dependent behavior of a rock mass containing discontinuities, even for relatively short-term rock structures.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0723-2632 1434-453X |
DOI: | 10.1007/s00603-002-0032-2 |