Loading…

Second-order elastic finite element analysis of steel structures using a single element per member

Finite element frame analysis programs targeted for design office application necessitate algorithms which can deliver reliable numerical convergence in a practical timeframe with comparable degrees of accuracy, and a highly desirable attribute is the use of a single element per member to reduce com...

Full description

Saved in:
Bibliographic Details
Published in:Engineering structures 2010-09, Vol.32 (9), p.2606-2616
Main Authors: Iu, C.K., Bradford, M.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c426t-fd341d5cd815d2f7730f5db2ddb6309d87400dcccf6654c48f21347943f8d05c3
cites cdi_FETCH-LOGICAL-c426t-fd341d5cd815d2f7730f5db2ddb6309d87400dcccf6654c48f21347943f8d05c3
container_end_page 2616
container_issue 9
container_start_page 2606
container_title Engineering structures
container_volume 32
creator Iu, C.K.
Bradford, M.A.
description Finite element frame analysis programs targeted for design office application necessitate algorithms which can deliver reliable numerical convergence in a practical timeframe with comparable degrees of accuracy, and a highly desirable attribute is the use of a single element per member to reduce computational storage, as well as data preparation and the interpretation of the results. To this end, a higher-order finite element method including geometric non-linearity is addressed in the paper for the analysis of elastic frames for which a single element is used to model each member. The geometric non-linearity in the structure is handled using an updated Lagrangian formulation, which takes the effects of the large translations and rotations that occur at the joints into consideration by accumulating their nodal coordinates. Rigid body movements are eliminated from the local member load–displacement relationship for which the total secant stiffness is formulated for evaluating the large member deformations of an element. The influences of the axial force on the member stiffness and the changes in the member chord length are taken into account using a modified bowing function which is formulated in the total secant stiffness relationship, for which the coupling of the axial strain and flexural bowing is included. The accuracy and efficiency of the technique is verified by comparisons with a number of plane and spatial structures, whose structural response has been reported in independent studies.
doi_str_mv 10.1016/j.engstruct.2010.04.033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787287017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014102961000177X</els_id><sourcerecordid>787287017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-fd341d5cd815d2f7730f5db2ddb6309d87400dcccf6654c48f21347943f8d05c3</originalsourceid><addsrcrecordid>eNqFkE1LJDEQhsPiwo6uv8FcxFPPVj66kzmKrO6C4EE9h0xSkQzd6THVLfjvt4cRPe6pqOL9oB7GLgSsBYju126N5YWmOodpLWG5gl6DUt_YSlijGqOkOmErEFo0IDfdD3ZKtAMAaS2s2PYRw1hiM9aIlWPvacqBp1zyhMuKA5aJ--L7d8rEx8RpQuz5sW-uSHymXF6454fRf3n2S9yAwxbrT_Y9-Z7w_GOesefb3083f5r7h7u_N9f3TdCym5oUlRaxDdGKNspkjILUxq2Mcdsp2ERrNEAMIaSua3XQNkmhtNlolWyENqgzdnXM3dfxdUaa3JApYN_7guNMzlgjrQFhFqU5KkMdiSomt6958PXdCXAHqG7nPqG6A1QH2i1QF-flR4en4PtUfQmZPu1SKdACDrrrow6Xh98yVkchYwkYc8UlM475v13_AJulk1M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787287017</pqid></control><display><type>article</type><title>Second-order elastic finite element analysis of steel structures using a single element per member</title><source>Elsevier</source><creator>Iu, C.K. ; Bradford, M.A.</creator><creatorcontrib>Iu, C.K. ; Bradford, M.A.</creatorcontrib><description>Finite element frame analysis programs targeted for design office application necessitate algorithms which can deliver reliable numerical convergence in a practical timeframe with comparable degrees of accuracy, and a highly desirable attribute is the use of a single element per member to reduce computational storage, as well as data preparation and the interpretation of the results. To this end, a higher-order finite element method including geometric non-linearity is addressed in the paper for the analysis of elastic frames for which a single element is used to model each member. The geometric non-linearity in the structure is handled using an updated Lagrangian formulation, which takes the effects of the large translations and rotations that occur at the joints into consideration by accumulating their nodal coordinates. Rigid body movements are eliminated from the local member load–displacement relationship for which the total secant stiffness is formulated for evaluating the large member deformations of an element. The influences of the axial force on the member stiffness and the changes in the member chord length are taken into account using a modified bowing function which is formulated in the total secant stiffness relationship, for which the coupling of the axial strain and flexural bowing is included. The accuracy and efficiency of the technique is verified by comparisons with a number of plane and spatial structures, whose structural response has been reported in independent studies.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2010.04.033</identifier><identifier>CODEN: ENSTDF</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Accuracy ; Applied sciences ; Bowing ; Buckling ; Building structure ; Buildings. Public works ; Construction (buildings and works) ; Elastic ; Exact sciences and technology ; Finite element ; Finite element method ; Frame analysis ; Frames ; Geometric non-linearity ; Mathematical analysis ; Mathematical models ; Metal structure ; Nonlinearity ; Rigid-body dynamics ; Snap-through ; Stiffness ; Stresses. Safety ; Structural analysis. Stresses</subject><ispartof>Engineering structures, 2010-09, Vol.32 (9), p.2606-2616</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-fd341d5cd815d2f7730f5db2ddb6309d87400dcccf6654c48f21347943f8d05c3</citedby><cites>FETCH-LOGICAL-c426t-fd341d5cd815d2f7730f5db2ddb6309d87400dcccf6654c48f21347943f8d05c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23304103$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Iu, C.K.</creatorcontrib><creatorcontrib>Bradford, M.A.</creatorcontrib><title>Second-order elastic finite element analysis of steel structures using a single element per member</title><title>Engineering structures</title><description>Finite element frame analysis programs targeted for design office application necessitate algorithms which can deliver reliable numerical convergence in a practical timeframe with comparable degrees of accuracy, and a highly desirable attribute is the use of a single element per member to reduce computational storage, as well as data preparation and the interpretation of the results. To this end, a higher-order finite element method including geometric non-linearity is addressed in the paper for the analysis of elastic frames for which a single element is used to model each member. The geometric non-linearity in the structure is handled using an updated Lagrangian formulation, which takes the effects of the large translations and rotations that occur at the joints into consideration by accumulating their nodal coordinates. Rigid body movements are eliminated from the local member load–displacement relationship for which the total secant stiffness is formulated for evaluating the large member deformations of an element. The influences of the axial force on the member stiffness and the changes in the member chord length are taken into account using a modified bowing function which is formulated in the total secant stiffness relationship, for which the coupling of the axial strain and flexural bowing is included. The accuracy and efficiency of the technique is verified by comparisons with a number of plane and spatial structures, whose structural response has been reported in independent studies.</description><subject>Accuracy</subject><subject>Applied sciences</subject><subject>Bowing</subject><subject>Buckling</subject><subject>Building structure</subject><subject>Buildings. Public works</subject><subject>Construction (buildings and works)</subject><subject>Elastic</subject><subject>Exact sciences and technology</subject><subject>Finite element</subject><subject>Finite element method</subject><subject>Frame analysis</subject><subject>Frames</subject><subject>Geometric non-linearity</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Metal structure</subject><subject>Nonlinearity</subject><subject>Rigid-body dynamics</subject><subject>Snap-through</subject><subject>Stiffness</subject><subject>Stresses. Safety</subject><subject>Structural analysis. Stresses</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LJDEQhsPiwo6uv8FcxFPPVj66kzmKrO6C4EE9h0xSkQzd6THVLfjvt4cRPe6pqOL9oB7GLgSsBYju126N5YWmOodpLWG5gl6DUt_YSlijGqOkOmErEFo0IDfdD3ZKtAMAaS2s2PYRw1hiM9aIlWPvacqBp1zyhMuKA5aJ--L7d8rEx8RpQuz5sW-uSHymXF6454fRf3n2S9yAwxbrT_Y9-Z7w_GOesefb3083f5r7h7u_N9f3TdCym5oUlRaxDdGKNspkjILUxq2Mcdsp2ERrNEAMIaSua3XQNkmhtNlolWyENqgzdnXM3dfxdUaa3JApYN_7guNMzlgjrQFhFqU5KkMdiSomt6958PXdCXAHqG7nPqG6A1QH2i1QF-flR4en4PtUfQmZPu1SKdACDrrrow6Xh98yVkchYwkYc8UlM475v13_AJulk1M</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Iu, C.K.</creator><creator>Bradford, M.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20100901</creationdate><title>Second-order elastic finite element analysis of steel structures using a single element per member</title><author>Iu, C.K. ; Bradford, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-fd341d5cd815d2f7730f5db2ddb6309d87400dcccf6654c48f21347943f8d05c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Applied sciences</topic><topic>Bowing</topic><topic>Buckling</topic><topic>Building structure</topic><topic>Buildings. Public works</topic><topic>Construction (buildings and works)</topic><topic>Elastic</topic><topic>Exact sciences and technology</topic><topic>Finite element</topic><topic>Finite element method</topic><topic>Frame analysis</topic><topic>Frames</topic><topic>Geometric non-linearity</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Metal structure</topic><topic>Nonlinearity</topic><topic>Rigid-body dynamics</topic><topic>Snap-through</topic><topic>Stiffness</topic><topic>Stresses. Safety</topic><topic>Structural analysis. Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iu, C.K.</creatorcontrib><creatorcontrib>Bradford, M.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iu, C.K.</au><au>Bradford, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second-order elastic finite element analysis of steel structures using a single element per member</atitle><jtitle>Engineering structures</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>32</volume><issue>9</issue><spage>2606</spage><epage>2616</epage><pages>2606-2616</pages><issn>0141-0296</issn><eissn>1873-7323</eissn><coden>ENSTDF</coden><abstract>Finite element frame analysis programs targeted for design office application necessitate algorithms which can deliver reliable numerical convergence in a practical timeframe with comparable degrees of accuracy, and a highly desirable attribute is the use of a single element per member to reduce computational storage, as well as data preparation and the interpretation of the results. To this end, a higher-order finite element method including geometric non-linearity is addressed in the paper for the analysis of elastic frames for which a single element is used to model each member. The geometric non-linearity in the structure is handled using an updated Lagrangian formulation, which takes the effects of the large translations and rotations that occur at the joints into consideration by accumulating their nodal coordinates. Rigid body movements are eliminated from the local member load–displacement relationship for which the total secant stiffness is formulated for evaluating the large member deformations of an element. The influences of the axial force on the member stiffness and the changes in the member chord length are taken into account using a modified bowing function which is formulated in the total secant stiffness relationship, for which the coupling of the axial strain and flexural bowing is included. The accuracy and efficiency of the technique is verified by comparisons with a number of plane and spatial structures, whose structural response has been reported in independent studies.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2010.04.033</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0141-0296
ispartof Engineering structures, 2010-09, Vol.32 (9), p.2606-2616
issn 0141-0296
1873-7323
language eng
recordid cdi_proquest_miscellaneous_787287017
source Elsevier
subjects Accuracy
Applied sciences
Bowing
Buckling
Building structure
Buildings. Public works
Construction (buildings and works)
Elastic
Exact sciences and technology
Finite element
Finite element method
Frame analysis
Frames
Geometric non-linearity
Mathematical analysis
Mathematical models
Metal structure
Nonlinearity
Rigid-body dynamics
Snap-through
Stiffness
Stresses. Safety
Structural analysis. Stresses
title Second-order elastic finite element analysis of steel structures using a single element per member
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second-order%20elastic%20finite%20element%20analysis%20of%20steel%20structures%20using%20a%20single%20element%20per%20member&rft.jtitle=Engineering%20structures&rft.au=Iu,%20C.K.&rft.date=2010-09-01&rft.volume=32&rft.issue=9&rft.spage=2606&rft.epage=2616&rft.pages=2606-2616&rft.issn=0141-0296&rft.eissn=1873-7323&rft.coden=ENSTDF&rft_id=info:doi/10.1016/j.engstruct.2010.04.033&rft_dat=%3Cproquest_cross%3E787287017%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-fd341d5cd815d2f7730f5db2ddb6309d87400dcccf6654c48f21347943f8d05c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=787287017&rft_id=info:pmid/&rfr_iscdi=true