Loading…

Two-component Ginzburg–Landau theory of superconducting surfaces in transverse electric field

A boundary condition for the Ginzburg–Landau wave function of a two-component superconductor at surfaces biased by a strong transverse electric field is derived within the de Gennes approach. This boundary condition depends on two correlation lengths of order parameters. A small correlation length l...

Full description

Saved in:
Bibliographic Details
Published in:Journal of non-crystalline solids 2010-08, Vol.356 (37), p.2056-2058
Main Authors: Konsin, P., Sorkin, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-be1b744f90f0a9fe8b4a6a5d826cd5ba6b605c0deb68cbd7e8806da69c712a833
cites cdi_FETCH-LOGICAL-c380t-be1b744f90f0a9fe8b4a6a5d826cd5ba6b605c0deb68cbd7e8806da69c712a833
container_end_page 2058
container_issue 37
container_start_page 2056
container_title Journal of non-crystalline solids
container_volume 356
creator Konsin, P.
Sorkin, B.
description A boundary condition for the Ginzburg–Landau wave function of a two-component superconductor at surfaces biased by a strong transverse electric field is derived within the de Gennes approach. This boundary condition depends on two correlation lengths of order parameters. A small correlation length leads to the oscillations of the shift of the critical temperature of superconducting layers in the transverse electric field on layer width L. The superconducting temperature T c oscillates with the layer width also in the absence of the electric field in the two-band model. A simple theory of the field effect on the superconducting temperature of layers is developed.
doi_str_mv 10.1016/j.jnoncrysol.2010.05.039
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787295187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022309310002681</els_id><sourcerecordid>787295187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-be1b744f90f0a9fe8b4a6a5d826cd5ba6b605c0deb68cbd7e8806da69c712a833</originalsourceid><addsrcrecordid>eNqFkMFu2zAMhoWhA5amewddhp6c0pYty8e22NoCAXppz4JMUZ0CR0olu0N26jv0Dfckc5BiO5YXggR__uTHGC9hVUIpLzarTYgB0z7HYVXB3IZmBaL7xBalakVRq7I6YQuAqioEdOILO815A3O0Qi2YfvgVC4zbXQwURn7jw-9-Sk9_Xt_WJlgz8fEnxbTn0fE87ShhDHbC0YenuU7OIGXuAx-TCfmFUiZOA-GYPHLnabBn7LMzQ6av73nJHn98f7i-Ldb3N3fXl-sChYKx6Kns27p2HTgwnSPV10aaxqpKom16I3sJDYKlXirsbUtKgbRGdtiWlVFCLNn5ce8uxeeJ8qi3PiMNgwkUp6xb1VZdcyCyZOo4iSnmnMjpXfJbk_a6BH1Aqjf6P1J9QKqh0TPSWfrt3cRkNIObn0af_-krIWqQ3eGYq-MczR-_eEo6o6eAZH2a4Wgb_cdmfwEJRJZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787295187</pqid></control><display><type>article</type><title>Two-component Ginzburg–Landau theory of superconducting surfaces in transverse electric field</title><source>ScienceDirect Freedom Collection</source><creator>Konsin, P. ; Sorkin, B.</creator><creatorcontrib>Konsin, P. ; Sorkin, B.</creatorcontrib><description>A boundary condition for the Ginzburg–Landau wave function of a two-component superconductor at surfaces biased by a strong transverse electric field is derived within the de Gennes approach. This boundary condition depends on two correlation lengths of order parameters. A small correlation length leads to the oscillations of the shift of the critical temperature of superconducting layers in the transverse electric field on layer width L. The superconducting temperature T c oscillates with the layer width also in the absence of the electric field in the two-band model. A simple theory of the field effect on the superconducting temperature of layers is developed.</description><identifier>ISSN: 0022-3093</identifier><identifier>EISSN: 1873-4812</identifier><identifier>DOI: 10.1016/j.jnoncrysol.2010.05.039</identifier><identifier>CODEN: JNCSBJ</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Boundary conditions ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Correlation ; Cuprates ; Electric field effects ; Electric fields ; Exact sciences and technology ; Order parameters ; Oscillations ; Phenomenological theories (two-fluid, ginzburg-landau, etc.) ; Physics ; Superconductivity ; Superconductors ; Theory ; Theory and models of superconducting state ; Wave functions</subject><ispartof>Journal of non-crystalline solids, 2010-08, Vol.356 (37), p.2056-2058</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-be1b744f90f0a9fe8b4a6a5d826cd5ba6b605c0deb68cbd7e8806da69c712a833</citedby><cites>FETCH-LOGICAL-c380t-be1b744f90f0a9fe8b4a6a5d826cd5ba6b605c0deb68cbd7e8806da69c712a833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,778,782,787,788,23917,23918,25127,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23340693$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Konsin, P.</creatorcontrib><creatorcontrib>Sorkin, B.</creatorcontrib><title>Two-component Ginzburg–Landau theory of superconducting surfaces in transverse electric field</title><title>Journal of non-crystalline solids</title><description>A boundary condition for the Ginzburg–Landau wave function of a two-component superconductor at surfaces biased by a strong transverse electric field is derived within the de Gennes approach. This boundary condition depends on two correlation lengths of order parameters. A small correlation length leads to the oscillations of the shift of the critical temperature of superconducting layers in the transverse electric field on layer width L. The superconducting temperature T c oscillates with the layer width also in the absence of the electric field in the two-band model. A simple theory of the field effect on the superconducting temperature of layers is developed.</description><subject>Boundary conditions</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Correlation</subject><subject>Cuprates</subject><subject>Electric field effects</subject><subject>Electric fields</subject><subject>Exact sciences and technology</subject><subject>Order parameters</subject><subject>Oscillations</subject><subject>Phenomenological theories (two-fluid, ginzburg-landau, etc.)</subject><subject>Physics</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Theory</subject><subject>Theory and models of superconducting state</subject><subject>Wave functions</subject><issn>0022-3093</issn><issn>1873-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu2zAMhoWhA5amewddhp6c0pYty8e22NoCAXppz4JMUZ0CR0olu0N26jv0Dfckc5BiO5YXggR__uTHGC9hVUIpLzarTYgB0z7HYVXB3IZmBaL7xBalakVRq7I6YQuAqioEdOILO815A3O0Qi2YfvgVC4zbXQwURn7jw-9-Sk9_Xt_WJlgz8fEnxbTn0fE87ShhDHbC0YenuU7OIGXuAx-TCfmFUiZOA-GYPHLnabBn7LMzQ6av73nJHn98f7i-Ldb3N3fXl-sChYKx6Kns27p2HTgwnSPV10aaxqpKom16I3sJDYKlXirsbUtKgbRGdtiWlVFCLNn5ce8uxeeJ8qi3PiMNgwkUp6xb1VZdcyCyZOo4iSnmnMjpXfJbk_a6BH1Aqjf6P1J9QKqh0TPSWfrt3cRkNIObn0af_-krIWqQ3eGYq-MczR-_eEo6o6eAZH2a4Wgb_cdmfwEJRJZE</recordid><startdate>20100815</startdate><enddate>20100815</enddate><creator>Konsin, P.</creator><creator>Sorkin, B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100815</creationdate><title>Two-component Ginzburg–Landau theory of superconducting surfaces in transverse electric field</title><author>Konsin, P. ; Sorkin, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-be1b744f90f0a9fe8b4a6a5d826cd5ba6b605c0deb68cbd7e8806da69c712a833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Boundary conditions</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Correlation</topic><topic>Cuprates</topic><topic>Electric field effects</topic><topic>Electric fields</topic><topic>Exact sciences and technology</topic><topic>Order parameters</topic><topic>Oscillations</topic><topic>Phenomenological theories (two-fluid, ginzburg-landau, etc.)</topic><topic>Physics</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Theory</topic><topic>Theory and models of superconducting state</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konsin, P.</creatorcontrib><creatorcontrib>Sorkin, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-crystalline solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konsin, P.</au><au>Sorkin, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-component Ginzburg–Landau theory of superconducting surfaces in transverse electric field</atitle><jtitle>Journal of non-crystalline solids</jtitle><date>2010-08-15</date><risdate>2010</risdate><volume>356</volume><issue>37</issue><spage>2056</spage><epage>2058</epage><pages>2056-2058</pages><issn>0022-3093</issn><eissn>1873-4812</eissn><coden>JNCSBJ</coden><abstract>A boundary condition for the Ginzburg–Landau wave function of a two-component superconductor at surfaces biased by a strong transverse electric field is derived within the de Gennes approach. This boundary condition depends on two correlation lengths of order parameters. A small correlation length leads to the oscillations of the shift of the critical temperature of superconducting layers in the transverse electric field on layer width L. The superconducting temperature T c oscillates with the layer width also in the absence of the electric field in the two-band model. A simple theory of the field effect on the superconducting temperature of layers is developed.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnoncrysol.2010.05.039</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3093
ispartof Journal of non-crystalline solids, 2010-08, Vol.356 (37), p.2056-2058
issn 0022-3093
1873-4812
language eng
recordid cdi_proquest_miscellaneous_787295187
source ScienceDirect Freedom Collection
subjects Boundary conditions
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Correlation
Cuprates
Electric field effects
Electric fields
Exact sciences and technology
Order parameters
Oscillations
Phenomenological theories (two-fluid, ginzburg-landau, etc.)
Physics
Superconductivity
Superconductors
Theory
Theory and models of superconducting state
Wave functions
title Two-component Ginzburg–Landau theory of superconducting surfaces in transverse electric field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-component%20Ginzburg%E2%80%93Landau%20theory%20of%20superconducting%20surfaces%20in%20transverse%20electric%20field&rft.jtitle=Journal%20of%20non-crystalline%20solids&rft.au=Konsin,%20P.&rft.date=2010-08-15&rft.volume=356&rft.issue=37&rft.spage=2056&rft.epage=2058&rft.pages=2056-2058&rft.issn=0022-3093&rft.eissn=1873-4812&rft.coden=JNCSBJ&rft_id=info:doi/10.1016/j.jnoncrysol.2010.05.039&rft_dat=%3Cproquest_cross%3E787295187%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-be1b744f90f0a9fe8b4a6a5d826cd5ba6b605c0deb68cbd7e8806da69c712a833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=787295187&rft_id=info:pmid/&rfr_iscdi=true