Loading…

The swinging lever-arm hypothesis of muscle contraction

The molecular mechanism of muscle contraction is a problem that has exercised biophysicists and biochemists for many years. The common view of the mechanism is embodied in the ‘cross-bridge hypothesis’, in which the relative sliding of thick (myosin) and thin (actin) filaments in cross-striated musc...

Full description

Saved in:
Bibliographic Details
Published in:Current Biology 1997-02, Vol.7 (2), p.R112-R118
Main Author: Holmes, Kenneth C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The molecular mechanism of muscle contraction is a problem that has exercised biophysicists and biochemists for many years. The common view of the mechanism is embodied in the ‘cross-bridge hypothesis’, in which the relative sliding of thick (myosin) and thin (actin) filaments in cross-striated muscle is brought about by the ‘cross-bridges’, parts of the myosin molecules which protrude from the thick filaments and interact cyclically with the actin filaments, transporting them by a rowing action that is powered by the hydrolysis of ATP. This hypothesis is, however, rather vague on the molecular details of cross-bridge movement and, in the light of the recently determined crystal structures of myosin and actin, it has evolved into the more precise ‘swinging lever-arm hypothesis’.
ISSN:0960-9822
1879-0445
DOI:10.1016/S0960-9822(06)00051-0