Loading…
The Effect of Caffeine and Caffeine Analogs on Rat Liver Phosphorylase a Activity
Liver phosphorylase a is stimulated by adenosine monophosphate. It is inhibited by adenosine diphosphate, adenosine triphosphate and glucose. Using these effectors as well as other potential in vivo effectors at concentrations approximating those present in hepatocytes, we previously reported that t...
Saved in:
Published in: | The Journal of pharmacology and experimental therapeutics 1997-03, Vol.280 (3), p.1312-1318 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Liver phosphorylase a is stimulated by adenosine monophosphate. It is inhibited by adenosine diphosphate, adenosine triphosphate and glucose. Using
these effectors as well as other potential in vivo effectors at concentrations approximating those present in hepatocytes, we previously reported that the net effect was nil,
i.e., at estimated in vivo concentration, the inhibitors neutralized the stimulatory effect of adenosine monophosphate in a phosphorylase a preparation. In addition, a concentration dependent inhibition by glucose was not present. Therefore, we were interested in
determining if addition of caffeine, an inhibitor that synergizes with glucose, would result in a reduction in activity in
the presence of the other effectors and restore regulation by physiological concentrations of glucose. The effect of xanthine
and xanthine analogs also were studied. Purified liver phosphorylase a was used. Activity was measured in the direction of glycogenolysis at 37°, pH 7.0 and under initial rate conditions. Caffeine
(1 mM) was added to individual and various combinations of other effectors. The interactions among the potential in vivo effectors when caffeine was present were complex. However, when caffeine was present glucose again regulated activity. This
most likely was due to a synergistically facilitated reduction in binding affinity for AMP by caffeine and glucose. Theophylline
and adenosine did not inhibit activity but reduced AMP stimulation and facilitated glucose inhibition. Xanthine and the other
xanthine derivatives all strongly inhibited activity and the inhibition was independent of other effectors. |
---|---|
ISSN: | 0022-3565 1521-0103 |