Loading…

Biochemical studies of soluble atrial natriuretic peptide (ANP) receptors from rat olfactory bulb and vascular smooth muscle cells

1. Aim. The biochemical characteristics of atrial natriuretic peptide receptors (ANP-R) derived from rat vascular smooth muscle (A-10 cell line) and central nervous system (CNS; olfactory bulb) tissue were compared. 2. Method and Results. ANP-Rs from each source were solubilized with 40 to 65% effic...

Full description

Saved in:
Bibliographic Details
Published in:Cellular and molecular neurobiology 1989-03, Vol.9 (1), p.57-73
Main Authors: Glembotski, C C, Wildey, G M, Gibson, T R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:1. Aim. The biochemical characteristics of atrial natriuretic peptide receptors (ANP-R) derived from rat vascular smooth muscle (A-10 cell line) and central nervous system (CNS; olfactory bulb) tissue were compared. 2. Method and Results. ANP-Rs from each source were solubilized with 40 to 65% efficiency utilizing the nonionic detergent Lubrol-PX. Upon solubilization, the ANP-R from each source maintained the ability to bind 125I-ANP (99-126) with a high affinity; Scatchard analysis indicated that the VSMC ANP-R displayed a Kd for the radioligand of approximately 10 pM, whereas the olfactory receptor possessed a Kd of about 165 pM. The Bmax values for the soluble VSMC and olfactory ANP-Rs were 285 and 30 fmol/mg protein, respectively. Competition binding studies indicated that the VSMC ANP-R bound ANP(99-126), ANP(103-126), and ANP(103-123) with similar affinities, whereas the olfactory ANP-R was much more sensitive to changes in the COOH-terminal structure of the competing peptide. The soluble ANP-Rs from VSMC and olfactory were chromatographically indistinguishable on phenyl-, DEAE-, and wheat germ agglutinin-agarose columns. However, the ANP-Rs could be distinguished using GTP-agarose; the olfactory ANP-R was capable of binding to the resin, whereas the VSMC ANP-R was not. 3. Conclusions. Coupled with other studies, these data suggest that the A10 VSMC ANP-R observed in this study may not be coupled to guanylate cyclase and may represent a receptor serving a clearance function, whereas a significant proportion of the olfactory CNS ANP-R appears to be associated with GTP-binding proteins, likely particulate guanylate cyclase, and probably represents a coupled form of the receptor.
ISSN:0272-4340
1573-6830
DOI:10.1007/BF00711443