Loading…

Laser-assisted thermal angioplasty in human peripheral artery occlusions: Mechanism of recanalization

Recanalization of completely occluded superficial femoral or popliteal arteries was attempted in 18 patients with use of an Argon laser-mediated thermal probe. The length of the occluded segments varied between 0.5 and 26.0 cm, but 67% of the occlusions were >9 cm long. The initial success rate w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American College of Cardiology 1989-06, Vol.13 (7), p.1547-1554
Main Authors: Tobis, Jonathan, Smolin, Michael, Mallery, John, Macleay, Lachlan, Johnston, Warren D., Connolly, John E., Lewis, George, Zuch, Bob, Henry, Walter, Berns, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recanalization of completely occluded superficial femoral or popliteal arteries was attempted in 18 patients with use of an Argon laser-mediated thermal probe. The length of the occluded segments varied between 0.5 and 26.0 cm, but 67% of the occlusions were >9 cm long. The initial success rate was 67%. Arterial perforation occurred in six patients but was not associated with major complications. To study the mechanism of the laser-mediated thermal probe, thermal recanalization was performed on 11 human arterial segments in vitro obtained after amputation, and mechanical recanalization was performed in vitro in 10 human peripheral arteries with use of a guide wire and catheter technique. An additional four arteries were studied with the laser probe as a non-heated mechanical device. Both the mechanical and thermal devices appear to follow a similar pathway through a complete obstruction. These studies suggest that the thermal probe burns through soft fibrous tissue but is mechanically deflected away from hard fibrocalcific plaque. The probe then advances along the plane between the intimal plaque and the media for a variable length before perforating through the adventitia. These observations suggest that the major mechanism of thermal probe recanalization may be a mechanical process. It appears that thermal probe devices do not inherently seek the true lumen of an occluded artery and that better guidance systems need to be developed.
ISSN:0735-1097
1558-3597
DOI:10.1016/0735-1097(89)90347-1