Loading…
Monocyte Chemotactic Protein-1 Increases Collateral and Peripheral Conductance After Femoral Artery Occlusion
Monocytes are activated during collateral artery growth in vivo, and monocyte chemotactic protein-1 (MCP-1) has been shown to be upregulated by shear stress in vitro. In order to investigate whether MCP-1 enhances collateral growth after femoral artery occlusion, 12 rabbits were randomly assigned to...
Saved in:
Published in: | Circulation research 1997-06, Vol.80 (6), p.829-837 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Monocytes are activated during collateral artery growth in vivo, and monocyte chemotactic protein-1 (MCP-1) has been shown to be upregulated by shear stress in vitro. In order to investigate whether MCP-1 enhances collateral growth after femoral artery occlusion, 12 rabbits were randomly assigned to receive either MCP-1, PBS, or no local infusion via osmotic minipump. Seven days after occlusion, isolated hindlimbs were perfused with autologous blood at different pressures, measuring flows at maximal vasodilation via flow probe and radioactive microspheres, as well as peripheral pressures. This allowed the calculation of collateral (thigh) and peripheral (lower limb) conductances from pressure-flow tracings (slope of the curve). Collateral growth on postmortem angiograms was restricted to the thigh and was markedly enhanced with MCP-1 treatment. Both collateral and peripheral conductances were significantly elevated in animals with MCP-1 treatment compared with the control group, reaching values of nonoccluded hindlimbs after only 1 week of occlusion (collateral conductance, 70.6 +/- 19.23 versus 25.1 +/- 2.59 mL/min per 100 mm Hg; P |
---|---|
ISSN: | 0009-7330 1524-4571 |
DOI: | 10.1161/01.res.80.6.829 |