Loading…
Assessment of induced bronchoconstriction in anesthetized cats by the end-inflation occlusion method
Airway occlusion during constant flow inflation allows rapid determination of frequency-dependence of pulmonary resistance by estimating its extreme values: RL,max (zero frequency) and RL,min (high frequency). RL,max represents the maximum resistance value that can be obtained with the prevailing ti...
Saved in:
Published in: | Lung 1989-12, Vol.167 (3), p.149-161 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c323t-2db26a04ae4b65a3494ac453383e02c52023d0667ee8febc8b158682479f9d4e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c323t-2db26a04ae4b65a3494ac453383e02c52023d0667ee8febc8b158682479f9d4e3 |
container_end_page | 161 |
container_issue | 3 |
container_start_page | 149 |
container_title | Lung |
container_volume | 167 |
creator | Baconnier, P Vahi-Maqueda, R Saetta, M Hasegawa, B Milic-Emili, J Pride, N |
description | Airway occlusion during constant flow inflation allows rapid determination of frequency-dependence of pulmonary resistance by estimating its extreme values: RL,max (zero frequency) and RL,min (high frequency). RL,max represents the maximum resistance value that can be obtained with the prevailing time constant inequalities and stress relaxation, while RL,min represents the resistance that would be obtained in the absence of time constant inequalities and stress relaxation. In 5 anesthetized, tracheostomized, paralyzed, and artificially ventilated cats, RL,min, RL,max, and static pulmonary elastance (EL,st) have been measured following airway occlusion at the end of constant flow tidal inflations. Measurements were made before and during continuous infusion of increasing doses of serotonin (10-100 micrograms/kg/min IV). The development of intrinsic positive end-expiratory pressure (PEEPi) was also assessed. Cats varied greatly in their responsiveness to serotonin, but RL,min, RL,max, and EL,st increased and PEEPi developed in all cats. Increases in RL,max did not always parallel increases in RL,min but were similar to those in EL,st, suggesting that altered viscoelastic properties of the lung contributed to the increases in RL,max. We conclude that time-constant inequalities, changes in the lung periphery, and hyperinflation probably all contribute to the observed increases in RL,max and will influence conventional methods of measuring RL. Measuring RL,min potentially provides a better method for assessing the reduction in caliber of the conducting airways in isolation. |
doi_str_mv | 10.1007/BF02714944 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79053532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79053532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-2db26a04ae4b65a3494ac453383e02c52023d0667ee8febc8b158682479f9d4e3</originalsourceid><addsrcrecordid>eNpFkL1PwzAQxS0EKiWwsCNlYkAKnL_yMZaKAlIlFpgjx76oQYldYmcofz0urWC6091P7949Qq4p3FOA4uFxBaygohLihMyp4CyjhYRTMgcuaMZAwDm58P4TgBY5lTMyYxJA5uWcmIX36P2ANqSuTTtrJo0mbUZn9cZpZ30YOx06Z-MuVRZ92GDoviOjVfBps0vjIEVrss62vfolndb95PfdgGHjzCU5a1Xv8epYE_KxenpfvmTrt-fX5WKdac54yJhpWK5AKBRNLhWPDyktJOclR2BaMmDcQJ4XiGWLjS4bKsu8ZKKo2soI5Am5PehuR_c1Rav10HmNfR99u8nXRQWSy3grIXcHUI_O-xHbejt2gxp3NYV6H2n9H2mEb46qUzOg-UOPGfIfUehx0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79053532</pqid></control><display><type>article</type><title>Assessment of induced bronchoconstriction in anesthetized cats by the end-inflation occlusion method</title><source>Springer LINK Archives</source><creator>Baconnier, P ; Vahi-Maqueda, R ; Saetta, M ; Hasegawa, B ; Milic-Emili, J ; Pride, N</creator><creatorcontrib>Baconnier, P ; Vahi-Maqueda, R ; Saetta, M ; Hasegawa, B ; Milic-Emili, J ; Pride, N</creatorcontrib><description>Airway occlusion during constant flow inflation allows rapid determination of frequency-dependence of pulmonary resistance by estimating its extreme values: RL,max (zero frequency) and RL,min (high frequency). RL,max represents the maximum resistance value that can be obtained with the prevailing time constant inequalities and stress relaxation, while RL,min represents the resistance that would be obtained in the absence of time constant inequalities and stress relaxation. In 5 anesthetized, tracheostomized, paralyzed, and artificially ventilated cats, RL,min, RL,max, and static pulmonary elastance (EL,st) have been measured following airway occlusion at the end of constant flow tidal inflations. Measurements were made before and during continuous infusion of increasing doses of serotonin (10-100 micrograms/kg/min IV). The development of intrinsic positive end-expiratory pressure (PEEPi) was also assessed. Cats varied greatly in their responsiveness to serotonin, but RL,min, RL,max, and EL,st increased and PEEPi developed in all cats. Increases in RL,max did not always parallel increases in RL,min but were similar to those in EL,st, suggesting that altered viscoelastic properties of the lung contributed to the increases in RL,max. We conclude that time-constant inequalities, changes in the lung periphery, and hyperinflation probably all contribute to the observed increases in RL,max and will influence conventional methods of measuring RL. Measuring RL,min potentially provides a better method for assessing the reduction in caliber of the conducting airways in isolation.</description><identifier>ISSN: 0341-2040</identifier><identifier>EISSN: 1432-1750</identifier><identifier>DOI: 10.1007/BF02714944</identifier><identifier>PMID: 2500568</identifier><language>eng</language><publisher>United States</publisher><subject>Airway Obstruction - physiopathology ; Airway Resistance - drug effects ; Animals ; Asthma - physiopathology ; Cats ; Lung - physiopathology ; Lung Compliance - drug effects ; Positive-Pressure Respiration ; Respiratory Function Tests ; Serotonin - pharmacology</subject><ispartof>Lung, 1989-12, Vol.167 (3), p.149-161</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-2db26a04ae4b65a3494ac453383e02c52023d0667ee8febc8b158682479f9d4e3</citedby><cites>FETCH-LOGICAL-c323t-2db26a04ae4b65a3494ac453383e02c52023d0667ee8febc8b158682479f9d4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2500568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baconnier, P</creatorcontrib><creatorcontrib>Vahi-Maqueda, R</creatorcontrib><creatorcontrib>Saetta, M</creatorcontrib><creatorcontrib>Hasegawa, B</creatorcontrib><creatorcontrib>Milic-Emili, J</creatorcontrib><creatorcontrib>Pride, N</creatorcontrib><title>Assessment of induced bronchoconstriction in anesthetized cats by the end-inflation occlusion method</title><title>Lung</title><addtitle>Lung</addtitle><description>Airway occlusion during constant flow inflation allows rapid determination of frequency-dependence of pulmonary resistance by estimating its extreme values: RL,max (zero frequency) and RL,min (high frequency). RL,max represents the maximum resistance value that can be obtained with the prevailing time constant inequalities and stress relaxation, while RL,min represents the resistance that would be obtained in the absence of time constant inequalities and stress relaxation. In 5 anesthetized, tracheostomized, paralyzed, and artificially ventilated cats, RL,min, RL,max, and static pulmonary elastance (EL,st) have been measured following airway occlusion at the end of constant flow tidal inflations. Measurements were made before and during continuous infusion of increasing doses of serotonin (10-100 micrograms/kg/min IV). The development of intrinsic positive end-expiratory pressure (PEEPi) was also assessed. Cats varied greatly in their responsiveness to serotonin, but RL,min, RL,max, and EL,st increased and PEEPi developed in all cats. Increases in RL,max did not always parallel increases in RL,min but were similar to those in EL,st, suggesting that altered viscoelastic properties of the lung contributed to the increases in RL,max. We conclude that time-constant inequalities, changes in the lung periphery, and hyperinflation probably all contribute to the observed increases in RL,max and will influence conventional methods of measuring RL. Measuring RL,min potentially provides a better method for assessing the reduction in caliber of the conducting airways in isolation.</description><subject>Airway Obstruction - physiopathology</subject><subject>Airway Resistance - drug effects</subject><subject>Animals</subject><subject>Asthma - physiopathology</subject><subject>Cats</subject><subject>Lung - physiopathology</subject><subject>Lung Compliance - drug effects</subject><subject>Positive-Pressure Respiration</subject><subject>Respiratory Function Tests</subject><subject>Serotonin - pharmacology</subject><issn>0341-2040</issn><issn>1432-1750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNpFkL1PwzAQxS0EKiWwsCNlYkAKnL_yMZaKAlIlFpgjx76oQYldYmcofz0urWC6091P7949Qq4p3FOA4uFxBaygohLihMyp4CyjhYRTMgcuaMZAwDm58P4TgBY5lTMyYxJA5uWcmIX36P2ANqSuTTtrJo0mbUZn9cZpZ30YOx06Z-MuVRZ92GDoviOjVfBps0vjIEVrss62vfolndb95PfdgGHjzCU5a1Xv8epYE_KxenpfvmTrt-fX5WKdac54yJhpWK5AKBRNLhWPDyktJOclR2BaMmDcQJ4XiGWLjS4bKsu8ZKKo2soI5Am5PehuR_c1Rav10HmNfR99u8nXRQWSy3grIXcHUI_O-xHbejt2gxp3NYV6H2n9H2mEb46qUzOg-UOPGfIfUehx0Q</recordid><startdate>198912</startdate><enddate>198912</enddate><creator>Baconnier, P</creator><creator>Vahi-Maqueda, R</creator><creator>Saetta, M</creator><creator>Hasegawa, B</creator><creator>Milic-Emili, J</creator><creator>Pride, N</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>198912</creationdate><title>Assessment of induced bronchoconstriction in anesthetized cats by the end-inflation occlusion method</title><author>Baconnier, P ; Vahi-Maqueda, R ; Saetta, M ; Hasegawa, B ; Milic-Emili, J ; Pride, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-2db26a04ae4b65a3494ac453383e02c52023d0667ee8febc8b158682479f9d4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Airway Obstruction - physiopathology</topic><topic>Airway Resistance - drug effects</topic><topic>Animals</topic><topic>Asthma - physiopathology</topic><topic>Cats</topic><topic>Lung - physiopathology</topic><topic>Lung Compliance - drug effects</topic><topic>Positive-Pressure Respiration</topic><topic>Respiratory Function Tests</topic><topic>Serotonin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baconnier, P</creatorcontrib><creatorcontrib>Vahi-Maqueda, R</creatorcontrib><creatorcontrib>Saetta, M</creatorcontrib><creatorcontrib>Hasegawa, B</creatorcontrib><creatorcontrib>Milic-Emili, J</creatorcontrib><creatorcontrib>Pride, N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Lung</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baconnier, P</au><au>Vahi-Maqueda, R</au><au>Saetta, M</au><au>Hasegawa, B</au><au>Milic-Emili, J</au><au>Pride, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of induced bronchoconstriction in anesthetized cats by the end-inflation occlusion method</atitle><jtitle>Lung</jtitle><addtitle>Lung</addtitle><date>1989-12</date><risdate>1989</risdate><volume>167</volume><issue>3</issue><spage>149</spage><epage>161</epage><pages>149-161</pages><issn>0341-2040</issn><eissn>1432-1750</eissn><abstract>Airway occlusion during constant flow inflation allows rapid determination of frequency-dependence of pulmonary resistance by estimating its extreme values: RL,max (zero frequency) and RL,min (high frequency). RL,max represents the maximum resistance value that can be obtained with the prevailing time constant inequalities and stress relaxation, while RL,min represents the resistance that would be obtained in the absence of time constant inequalities and stress relaxation. In 5 anesthetized, tracheostomized, paralyzed, and artificially ventilated cats, RL,min, RL,max, and static pulmonary elastance (EL,st) have been measured following airway occlusion at the end of constant flow tidal inflations. Measurements were made before and during continuous infusion of increasing doses of serotonin (10-100 micrograms/kg/min IV). The development of intrinsic positive end-expiratory pressure (PEEPi) was also assessed. Cats varied greatly in their responsiveness to serotonin, but RL,min, RL,max, and EL,st increased and PEEPi developed in all cats. Increases in RL,max did not always parallel increases in RL,min but were similar to those in EL,st, suggesting that altered viscoelastic properties of the lung contributed to the increases in RL,max. We conclude that time-constant inequalities, changes in the lung periphery, and hyperinflation probably all contribute to the observed increases in RL,max and will influence conventional methods of measuring RL. Measuring RL,min potentially provides a better method for assessing the reduction in caliber of the conducting airways in isolation.</abstract><cop>United States</cop><pmid>2500568</pmid><doi>10.1007/BF02714944</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0341-2040 |
ispartof | Lung, 1989-12, Vol.167 (3), p.149-161 |
issn | 0341-2040 1432-1750 |
language | eng |
recordid | cdi_proquest_miscellaneous_79053532 |
source | Springer LINK Archives |
subjects | Airway Obstruction - physiopathology Airway Resistance - drug effects Animals Asthma - physiopathology Cats Lung - physiopathology Lung Compliance - drug effects Positive-Pressure Respiration Respiratory Function Tests Serotonin - pharmacology |
title | Assessment of induced bronchoconstriction in anesthetized cats by the end-inflation occlusion method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20induced%20bronchoconstriction%20in%20anesthetized%20cats%20by%20the%20end-inflation%20occlusion%20method&rft.jtitle=Lung&rft.au=Baconnier,%20P&rft.date=1989-12&rft.volume=167&rft.issue=3&rft.spage=149&rft.epage=161&rft.pages=149-161&rft.issn=0341-2040&rft.eissn=1432-1750&rft_id=info:doi/10.1007/BF02714944&rft_dat=%3Cproquest_cross%3E79053532%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-2db26a04ae4b65a3494ac453383e02c52023d0667ee8febc8b158682479f9d4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=79053532&rft_id=info:pmid/2500568&rfr_iscdi=true |