Loading…
Performance and fibre characteristics of human skeletal muscle during short sprint training and detraining on a cycle ergometer
The ergometric effect of sprint training and detraining was studied in relation to muscle fibre changes in seven students trained during 9 weeks on a cycle ergometer. Before and after training and after 7-week detraining, they performed a force-velocity test on a friction-loaded cycle ergometer. On...
Saved in:
Published in: | European journal of applied physiology 1997-06, Vol.75 (6), p.491-498 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c348t-5940302ac62168fbcb3fc159fc604c1b36f5754c94a6b931cef2fbb858599c2b3 |
---|---|
cites | |
container_end_page | 498 |
container_issue | 6 |
container_start_page | 491 |
container_title | European journal of applied physiology |
container_volume | 75 |
creator | LINOSSIER, M.-T DORMOIS, D GEYSSANT, A DENIS, C |
description | The ergometric effect of sprint training and detraining was studied in relation to muscle fibre changes in seven students trained during 9 weeks on a cycle ergometer. Before and after training and after 7-week detraining, they performed a force-velocity test on a friction-loaded cycle ergometer. On these three occasions, muscle samples were taken from vastus lateralis muscle at rest for histochemical analysis. The training-induced shift of the force-velocity relationship was such that the increase in maximal velocity (vmax) was greatest against high braking forces (FB) with unchanged vmax with no load. This was associated with higher maximal power output (28%) and peak force (16%). The increased maximal mean power output to reach a maximal velocity during a short sprint was obtained against a 23% higher optimal FB (FB,Wmax). At the same time, a considerable hypertrophy in fast twitch b (FTb) fibres was observed. All these changes were maintained after detraining. The training-induced changes in vmax reached against FB1Wmax(vm2Wmax) allowed us to produce evidence for two particular sub-groups in which inverse fibre conversions were observed. In subgroup A, the lowered post-training vm,Wmax was associated with a decrease in both FTa and FTb fibres. Conversely, the vm,Wmax, increase in subgroup B was associated with a higher percentage of FT fibres as the result of increased FTa fibres and decreased FTb fibres. Thus, the fibre hypertrophy associated with a unidirectional fibre translation [FTb-->FTa-->slow twitch (ST)] toward fibres with a high thermodynamic efficiency would result mainly in increased force qualities, whereas the bidirectional fibre translation (ST-->FTa |
doi_str_mv | 10.1007/s004210050194 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79087055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18835036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-5940302ac62168fbcb3fc159fc604c1b36f5754c94a6b931cef2fbb858599c2b3</originalsourceid><addsrcrecordid>eNqFkbtvFDEQxi0ECkegpERygeg2jF-7dokiHpEiQQH1yp4b5xb2ETy7RSr-dXzK6SQqqnn95pM-fUK8VnClALr3DGB17RyoYJ-InbJGNwq0eyp2YEA1zln_XLxg_gmgIZjuQlwEDTpYuxN_vlHJS5nijCTjvJd5SIUkHmKJuFIZeB2Q5ZLlYauQ5F800hpHOW2MI8n9Vob5TvJhKavk-zqsci1xmI_bo96ezuMyyyjx4fhG5W6ZqOq_FM9yHJleneql-PHp4_frL83t18831x9uGzTWr40LtnrREVutWp8TJpNRuZCxBYsqmTa7zlkMNrYpGIWUdU7JO-9CQJ3MpXj3qHtflt8b8dpPAyONY5xp2bjvAvgOnPsvqLw3DkxbweYRxLIwF8p9dT_F8tAr6I_J9P8kU_k3J-EtTbQ_06co6v3t6R4Z45hLjWTgM6Zb39nWm7_z8Jc7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18835036</pqid></control><display><type>article</type><title>Performance and fibre characteristics of human skeletal muscle during short sprint training and detraining on a cycle ergometer</title><source>Springer Link</source><creator>LINOSSIER, M.-T ; DORMOIS, D ; GEYSSANT, A ; DENIS, C</creator><creatorcontrib>LINOSSIER, M.-T ; DORMOIS, D ; GEYSSANT, A ; DENIS, C</creatorcontrib><description>The ergometric effect of sprint training and detraining was studied in relation to muscle fibre changes in seven students trained during 9 weeks on a cycle ergometer. Before and after training and after 7-week detraining, they performed a force-velocity test on a friction-loaded cycle ergometer. On these three occasions, muscle samples were taken from vastus lateralis muscle at rest for histochemical analysis. The training-induced shift of the force-velocity relationship was such that the increase in maximal velocity (vmax) was greatest against high braking forces (FB) with unchanged vmax with no load. This was associated with higher maximal power output (28%) and peak force (16%). The increased maximal mean power output to reach a maximal velocity during a short sprint was obtained against a 23% higher optimal FB (FB,Wmax). At the same time, a considerable hypertrophy in fast twitch b (FTb) fibres was observed. All these changes were maintained after detraining. The training-induced changes in vmax reached against FB1Wmax(vm2Wmax) allowed us to produce evidence for two particular sub-groups in which inverse fibre conversions were observed. In subgroup A, the lowered post-training vm,Wmax was associated with a decrease in both FTa and FTb fibres. Conversely, the vm,Wmax, increase in subgroup B was associated with a higher percentage of FT fibres as the result of increased FTa fibres and decreased FTb fibres. Thus, the fibre hypertrophy associated with a unidirectional fibre translation [FTb-->FTa-->slow twitch (ST)] toward fibres with a high thermodynamic efficiency would result mainly in increased force qualities, whereas the bidirectional fibre translation (ST-->FTa<--FTb) would allow enhancement of both force and velocity properties.</description><identifier>ISSN: 0301-5548</identifier><identifier>ISSN: 1439-6319</identifier><identifier>EISSN: 1432-1025</identifier><identifier>EISSN: 1439-6327</identifier><identifier>DOI: 10.1007/s004210050194</identifier><identifier>PMID: 9202944</identifier><identifier>CODEN: EJAPCK</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Adult ; Biological and medical sciences ; Exercise Test ; Fundamental and applied biological sciences. Psychology ; Histocytochemistry ; Humans ; Hypertrophy ; Male ; Muscle Fibers, Fast-Twitch - pathology ; Muscle, Skeletal - pathology ; Muscle, Skeletal - physiology ; Physical Education and Training ; Running - physiology ; Space life sciences ; Striated muscle. Tendons ; Vertebrates: osteoarticular system, musculoskeletal system</subject><ispartof>European journal of applied physiology, 1997-06, Vol.75 (6), p.491-498</ispartof><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-5940302ac62168fbcb3fc159fc604c1b36f5754c94a6b931cef2fbb858599c2b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2687468$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9202944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LINOSSIER, M.-T</creatorcontrib><creatorcontrib>DORMOIS, D</creatorcontrib><creatorcontrib>GEYSSANT, A</creatorcontrib><creatorcontrib>DENIS, C</creatorcontrib><title>Performance and fibre characteristics of human skeletal muscle during short sprint training and detraining on a cycle ergometer</title><title>European journal of applied physiology</title><addtitle>Eur J Appl Physiol Occup Physiol</addtitle><description>The ergometric effect of sprint training and detraining was studied in relation to muscle fibre changes in seven students trained during 9 weeks on a cycle ergometer. Before and after training and after 7-week detraining, they performed a force-velocity test on a friction-loaded cycle ergometer. On these three occasions, muscle samples were taken from vastus lateralis muscle at rest for histochemical analysis. The training-induced shift of the force-velocity relationship was such that the increase in maximal velocity (vmax) was greatest against high braking forces (FB) with unchanged vmax with no load. This was associated with higher maximal power output (28%) and peak force (16%). The increased maximal mean power output to reach a maximal velocity during a short sprint was obtained against a 23% higher optimal FB (FB,Wmax). At the same time, a considerable hypertrophy in fast twitch b (FTb) fibres was observed. All these changes were maintained after detraining. The training-induced changes in vmax reached against FB1Wmax(vm2Wmax) allowed us to produce evidence for two particular sub-groups in which inverse fibre conversions were observed. In subgroup A, the lowered post-training vm,Wmax was associated with a decrease in both FTa and FTb fibres. Conversely, the vm,Wmax, increase in subgroup B was associated with a higher percentage of FT fibres as the result of increased FTa fibres and decreased FTb fibres. Thus, the fibre hypertrophy associated with a unidirectional fibre translation [FTb-->FTa-->slow twitch (ST)] toward fibres with a high thermodynamic efficiency would result mainly in increased force qualities, whereas the bidirectional fibre translation (ST-->FTa<--FTb) would allow enhancement of both force and velocity properties.</description><subject>Adult</subject><subject>Biological and medical sciences</subject><subject>Exercise Test</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Histocytochemistry</subject><subject>Humans</subject><subject>Hypertrophy</subject><subject>Male</subject><subject>Muscle Fibers, Fast-Twitch - pathology</subject><subject>Muscle, Skeletal - pathology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Physical Education and Training</subject><subject>Running - physiology</subject><subject>Space life sciences</subject><subject>Striated muscle. Tendons</subject><subject>Vertebrates: osteoarticular system, musculoskeletal system</subject><issn>0301-5548</issn><issn>1439-6319</issn><issn>1432-1025</issn><issn>1439-6327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkbtvFDEQxi0ECkegpERygeg2jF-7dokiHpEiQQH1yp4b5xb2ETy7RSr-dXzK6SQqqnn95pM-fUK8VnClALr3DGB17RyoYJ-InbJGNwq0eyp2YEA1zln_XLxg_gmgIZjuQlwEDTpYuxN_vlHJS5nijCTjvJd5SIUkHmKJuFIZeB2Q5ZLlYauQ5F800hpHOW2MI8n9Vob5TvJhKavk-zqsci1xmI_bo96ezuMyyyjx4fhG5W6ZqOq_FM9yHJleneql-PHp4_frL83t18831x9uGzTWr40LtnrREVutWp8TJpNRuZCxBYsqmTa7zlkMNrYpGIWUdU7JO-9CQJ3MpXj3qHtflt8b8dpPAyONY5xp2bjvAvgOnPsvqLw3DkxbweYRxLIwF8p9dT_F8tAr6I_J9P8kU_k3J-EtTbQ_06co6v3t6R4Z45hLjWTgM6Zb39nWm7_z8Jc7</recordid><startdate>19970601</startdate><enddate>19970601</enddate><creator>LINOSSIER, M.-T</creator><creator>DORMOIS, D</creator><creator>GEYSSANT, A</creator><creator>DENIS, C</creator><general>Springer</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TS</scope><scope>7X8</scope></search><sort><creationdate>19970601</creationdate><title>Performance and fibre characteristics of human skeletal muscle during short sprint training and detraining on a cycle ergometer</title><author>LINOSSIER, M.-T ; DORMOIS, D ; GEYSSANT, A ; DENIS, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-5940302ac62168fbcb3fc159fc604c1b36f5754c94a6b931cef2fbb858599c2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Adult</topic><topic>Biological and medical sciences</topic><topic>Exercise Test</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Histocytochemistry</topic><topic>Humans</topic><topic>Hypertrophy</topic><topic>Male</topic><topic>Muscle Fibers, Fast-Twitch - pathology</topic><topic>Muscle, Skeletal - pathology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Physical Education and Training</topic><topic>Running - physiology</topic><topic>Space life sciences</topic><topic>Striated muscle. Tendons</topic><topic>Vertebrates: osteoarticular system, musculoskeletal system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LINOSSIER, M.-T</creatorcontrib><creatorcontrib>DORMOIS, D</creatorcontrib><creatorcontrib>GEYSSANT, A</creatorcontrib><creatorcontrib>DENIS, C</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of applied physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LINOSSIER, M.-T</au><au>DORMOIS, D</au><au>GEYSSANT, A</au><au>DENIS, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance and fibre characteristics of human skeletal muscle during short sprint training and detraining on a cycle ergometer</atitle><jtitle>European journal of applied physiology</jtitle><addtitle>Eur J Appl Physiol Occup Physiol</addtitle><date>1997-06-01</date><risdate>1997</risdate><volume>75</volume><issue>6</issue><spage>491</spage><epage>498</epage><pages>491-498</pages><issn>0301-5548</issn><issn>1439-6319</issn><eissn>1432-1025</eissn><eissn>1439-6327</eissn><coden>EJAPCK</coden><abstract>The ergometric effect of sprint training and detraining was studied in relation to muscle fibre changes in seven students trained during 9 weeks on a cycle ergometer. Before and after training and after 7-week detraining, they performed a force-velocity test on a friction-loaded cycle ergometer. On these three occasions, muscle samples were taken from vastus lateralis muscle at rest for histochemical analysis. The training-induced shift of the force-velocity relationship was such that the increase in maximal velocity (vmax) was greatest against high braking forces (FB) with unchanged vmax with no load. This was associated with higher maximal power output (28%) and peak force (16%). The increased maximal mean power output to reach a maximal velocity during a short sprint was obtained against a 23% higher optimal FB (FB,Wmax). At the same time, a considerable hypertrophy in fast twitch b (FTb) fibres was observed. All these changes were maintained after detraining. The training-induced changes in vmax reached against FB1Wmax(vm2Wmax) allowed us to produce evidence for two particular sub-groups in which inverse fibre conversions were observed. In subgroup A, the lowered post-training vm,Wmax was associated with a decrease in both FTa and FTb fibres. Conversely, the vm,Wmax, increase in subgroup B was associated with a higher percentage of FT fibres as the result of increased FTa fibres and decreased FTb fibres. Thus, the fibre hypertrophy associated with a unidirectional fibre translation [FTb-->FTa-->slow twitch (ST)] toward fibres with a high thermodynamic efficiency would result mainly in increased force qualities, whereas the bidirectional fibre translation (ST-->FTa<--FTb) would allow enhancement of both force and velocity properties.</abstract><cop>Berlin</cop><pub>Springer</pub><pmid>9202944</pmid><doi>10.1007/s004210050194</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-5548 |
ispartof | European journal of applied physiology, 1997-06, Vol.75 (6), p.491-498 |
issn | 0301-5548 1439-6319 1432-1025 1439-6327 |
language | eng |
recordid | cdi_proquest_miscellaneous_79087055 |
source | Springer Link |
subjects | Adult Biological and medical sciences Exercise Test Fundamental and applied biological sciences. Psychology Histocytochemistry Humans Hypertrophy Male Muscle Fibers, Fast-Twitch - pathology Muscle, Skeletal - pathology Muscle, Skeletal - physiology Physical Education and Training Running - physiology Space life sciences Striated muscle. Tendons Vertebrates: osteoarticular system, musculoskeletal system |
title | Performance and fibre characteristics of human skeletal muscle during short sprint training and detraining on a cycle ergometer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20and%20fibre%20characteristics%20of%20human%20skeletal%20muscle%20during%20short%20sprint%20training%20and%20detraining%20on%20a%20cycle%20ergometer&rft.jtitle=European%20journal%20of%20applied%20physiology&rft.au=LINOSSIER,%20M.-T&rft.date=1997-06-01&rft.volume=75&rft.issue=6&rft.spage=491&rft.epage=498&rft.pages=491-498&rft.issn=0301-5548&rft.eissn=1432-1025&rft.coden=EJAPCK&rft_id=info:doi/10.1007/s004210050194&rft_dat=%3Cproquest_cross%3E18835036%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-5940302ac62168fbcb3fc159fc604c1b36f5754c94a6b931cef2fbb858599c2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18835036&rft_id=info:pmid/9202944&rfr_iscdi=true |