Loading…

Characterization of the effect of dopamine D3 receptor stimulation on locomotion and striatal dopamine levels

By examining the effect of dopamine (DA) D3 receptor stimulation on locomotor activity and extracellular levels of DA in striatum we show that inhibition of locomotor activity induced by DA D3 receptor-selective agonists is mediated by two interacting mechanisms: (1) directly via the stimulation of...

Full description

Saved in:
Bibliographic Details
Published in:Brain research 1997-05, Vol.758 (1-2), p.83-91
Main Authors: De Boer, P, Enrico, P, Wright, J, Wise, L D, Timmerman, W, Moor, E, Dijkstra, D, Wikström, H V, Westerink, B H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:By examining the effect of dopamine (DA) D3 receptor stimulation on locomotor activity and extracellular levels of DA in striatum we show that inhibition of locomotor activity induced by DA D3 receptor-selective agonists is mediated by two interacting mechanisms: (1) directly via the stimulation of DA D3 receptors that inhibit locomotor activity, and (2) indirectly via a decrease in extracellular levels of DA. Thus, the moderately DA D3 receptor-selective agonist R-(+)-7-OH- DPAT (R-(+)-7-hydroxy-2-(N,N-di-n-propylamino)tetralin) decreased locomotor activity after administration of 10 nmol/kg and extracellular DA levels in accumbens and striatum after administration of 30 nmol/kg. A decrease in locomotor activity that coincided with a decrease in extracellular DA levels in striatum was observed after administration of 100 nmol/kg of the DA D3 receptor-selective agonist PD128907 ((+)-trans-3,4,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3 b]-1,4-oxasin-9-ol. In combination with the partial, DA D3 receptor-selective agonist PD151328 (2-[4[3-(4-phenyl)-1- piperazinyl)propoxy]phenyl]-benzamidazole), a reversal of the attenuating effect of PD128907 on locomotor activity was observed, without an effect on extracellular levels of DA. In combination with a low--10 nmol/kg--dose of haloperidol, a reversal of the inhibitory effect of PD128907 on locomotor activity was observed that coincided with an increase in extracellular levels of DA. In the presence of 0.5 mg/kg amphetamine, PD128907 decreased amphetamine-induced locomotor activity. This effect could be reversed by PD151328.
ISSN:0006-8993
DOI:10.1016/S0006-8993(96)01438-2