Loading…

Specification of Receptor-Binding Phenotypes of Influenza Virus Isolates from Different Hosts Using Synthetic Sialylglycopolymers: Non-Egg-Adapted Human H1 and H3 Influenza A and Influenza B Viruses Share a Common High Binding Affinity for 6′-Sialyl(N-acetyllactosamine)

Synthetic sialylglycoconjugates bearing 3′-sialyllactose, 6′-sialyllactose, or 6′-sialyl(N-acetyllactosamine) moieties attached to the polyacrylic acid carrier (P-3-SL, P-6-SL, and P-6-SLN, respectively) were prepared and tested for their ability to bind to influenza virus isolates from different ho...

Full description

Saved in:
Bibliographic Details
Published in:Virology (New York, N.Y.) N.Y.), 1997-06, Vol.232 (2), p.345-350
Main Authors: Gambaryan, A.S., Tuzikov, A.B., Piskarev, V.E., Yamnikova, S.S., Lvov, D.K., Robertson, J.S., Bovin, N.V., Matrosovich, M.N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synthetic sialylglycoconjugates bearing 3′-sialyllactose, 6′-sialyllactose, or 6′-sialyl(N-acetyllactosamine) moieties attached to the polyacrylic acid carrier (P-3-SL, P-6-SL, and P-6-SLN, respectively) were prepared and tested for their ability to bind to influenza virus isolates from different hosts in a competitive solid phase assay. The virus panel included egg-grown avian and porcine strains, as well as human viruses isolated and propagated solely in mammalian (MDCK) cells and their egg-adapted variants. A clear correlation was observed between the pattern of virus binding of two glycopolymers, P-3-SL and P-6-SLN, and the host species from which the virus was derived. Avian isolates displayed a high binding affinity for P-3-SL and a two to three orders of magnitude lower affinity for P-6-SLN. By contrast, all non-egg-adapted human A and B viruses bound P-6-SLN strongly but did not bind P-3-SL. Unlike the “authentic” human strains, their egg-adapted counterparts acquired an ability to bind P-3-SL, indicative of a shift in the receptor-binding phenotype toward the recognition of Neu5Ac2-3Gal-terminated sugar sequences. Among the porcine viruses and human isolates with porcine hemagglutinin, few displayed an avian-like binding phenotype, while others differed from both avian and human strains by a reduced ability to discriminate between P-3-SL and P-6-SLN. Our data show that sialylglycopolymers may become a useful tool in studies on molecular mechanisms of interspecies transfer, tissue specificity, and other structure–function relationships of the influenza virus hemagglutinin.
ISSN:0042-6822
1096-0341
DOI:10.1006/viro.1997.8572