Loading…
Differential expression of galanin immunoreactivities in the primary sensory neurons following partial and complete sciatic nerve injuries
Neuropeptide expression in primary sensory neurons is highly plastic in response to peripheral nerve axotomy. While neuropeptide changes following complete sciatic nerve injury have been extensively studied, much less is known about the effects of partial sciatic nerve injuries on neuropeptide plast...
Saved in:
Published in: | Neuroscience 1997-08, Vol.79 (4), p.1183-1195 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neuropeptide expression in primary sensory neurons is highly plastic in response to peripheral nerve axotomy. While neuropeptide changes following complete sciatic nerve injury have been extensively studied, much less is known about the effects of partial sciatic nerve injuries on neuropeptide plasticity. Galanin, a possible endogenous analgesic peptide, was up-regulated in primary sensory neurons following complete sciatic nerve injury. We investigated the effects of partial sciatic nerve injuries on galanin expression in primary sensory neurons, and compared this effect with that after complete sciatic nerve injury. Complete transection, partial transection and chronic constriction injury were made, respectively, on the sciatic nerves of three groups of rats at high thigh level. Animals were allowed to survive for four and 14 days before being killed. L4 and L5 dorsal root ganglia, L4–5 spinal cord and lower brainstem were processed for galanin immunocytochemical staining. After all three types of sciatic nerve injuries, galanin-immunoreactive neurons were significantly increased in the ipsilateral dorsal root ganglia, and galanin-immunoreactive axonal fibres were dramatically increased in the superficial laminae of the dorsal horn and the gracile nuclei, compared to the contralateral side. However, in partial injury models, the percentages of galanin-immunoreactive dorsal root ganglion neurons were significantly higher than in complete nerve transection. Size frequency distribution analysis detected that more medium- and large-size galanin-immunoreactive dorsal root ganglion neurons were present after partial nerve transection and constriction injury than after complete nerve transection. Using a combined approach of retrograde tracing of flurorescent dyes and galanin immunostaining, we found that a partial transection increased the proportions of galanin-immunoreactive neurons among both axotomized and non-axotomized neurons. Galanin-immunoreactive axonal fibres were not only detected in the superficial laminae, but also in the deeper laminae of the dorsal horn of partial injury animals. Furthermore, more galanin-immunoreactive axonal fibres were observed in the ipsilateral gracile nuclei of partially injured rats than in completely injured rats.
We conclude that partial sciatic nerve injuries induced greater galanin up-regulation in medium- and large-size dorsal root ganglion neurons than complete sciatic nerve injury. Galanin expression in primary se |
---|---|
ISSN: | 0306-4522 1873-7544 |
DOI: | 10.1016/S0306-4522(97)00088-2 |