Loading…

Reconstitution of the Holoenzyme Form of Escherichia coli Porphobilinogen Deaminase from Apoenzyme with Porphobilinogen and Preuroporphyrinogen:  A Study Using Circular Dichroism Spectroscopy

Porphobilinogen deaminase (PBG-D), an early enzyme of the tetrapyrrole biosynthetic pathway, catalyzes the formation of a tetrapyrrole chain, preuroporphyrinogen, from four molecules of porphobilinogen (PBG). The PBG-D apoenzyme is responsible for the autocatalytic synthesis and covalent attachment...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1997-07, Vol.36 (30), p.9273-9282
Main Authors: Awan, Sarah J, Siligardi, Giuliano, Shoolingin-Jordan, Peter M, Warren, Martin J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Porphobilinogen deaminase (PBG-D), an early enzyme of the tetrapyrrole biosynthetic pathway, catalyzes the formation of a tetrapyrrole chain, preuroporphyrinogen, from four molecules of porphobilinogen (PBG). The PBG-D apoenzyme is responsible for the autocatalytic synthesis and covalent attachment of a dipyrromethane cofactor at its active site. In this paper an efficient method for the purification of Escherichia coli PBG-D apoenzyme using an affinity chromatography resin is reported. Circular dichroism (CD) spectra of apoenzyme and holoenzyme were recorded and significant differences in both the backbone and aromatic region of the spectra were observed. The differences in the spectra allowed the reconstitution of holoenzyme from purified apoenzyme with PBG and preuroporphyrinogen in solution to be monitored separately by CD. Apoenzyme incubated with preuroporhyrinogen gave a CD spectrum that was much more like the CD spectrum of holoenzyme than apoenzyme incubated with PBG. The results showed clearly that the cofactor was generated much more rapidly from preuroporphyrinogen than from PBG. Changes in the CD spectrum associated with the aromatic side-chain region, in particular the contribution assigned to phenylalanine-62, were found to correlate well with the activity of the reconstituted enzyme. Phenylalanine-62 is located in close proximity to the cofactor and acts as a sensitive probe to active-site changes. The stability of the holoenzyme and apoenzyme were compared with respect to both heat and susceptibility to proteolysis. The results were consistent with a model for the apoenzyme in which, in the absence of the cofactor, the three domains of the protein are held less rigidly together, thereby making the protein more susceptible to heat denaturation and proteolysis. The CD spectrum of the holoenzyme was found to be similar at both pH 5.1 and 7.4, suggesting that the crystal structure, determined at pH 5.1, is likely to be similar at physiological pH values.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi9702602