Loading…
Identification of an 8-Lipoxygenase Pathway in Nervous Tissue of Aplysia californica
Arachidonic acid is converted to (8R)-hydroperoxyeicosa-5,9,11,14-tetraenoic acid (8-HPETE) during incubations with homogenates of the central nervous system of the marine mollusc, Aplysia californica. 8-HPETE can be reduced to the corresponding hydroxy acid or be enzymatically converted to a newly...
Saved in:
Published in: | The Journal of biological chemistry 1997-07, Vol.272 (30), p.18673-18681 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Arachidonic acid is converted to (8R)-hydroperoxyeicosa-5,9,11,14-tetraenoic acid (8-HPETE) during incubations with homogenates of the central nervous system of the marine mollusc, Aplysia californica. 8-HPETE can be reduced to the corresponding hydroxy acid or be enzymatically converted to a newly identified metabolite, 8-ketoeicosa-5,9,11,14-tetraenoic acid (8-KETE). These metabolites were identified by high performance liquid chromatography, UV absorbance, and gas chromatography/mass spectrometry. Stereochemical analysis of the products demonstrate that the neuronal enzyme is an (8R)-lipoxygenase. Previously we have shown that the neurotransmitters, histamine and Phe-Met-Arg-Phe-amide, activate 12-lipoxygenase metabolism in isolated identified Aplysia neurons. We now show that acetylcholine activates the (8R)-lipoxygenase pathway within intact nerve cells. Thus, both (12S)- and (8R)-lipoxygenase co-exist in intact Aplysia nervous tissue but are differentially activated by several neurotransmitters. The precise physiological role of the 8-lipoxygenase products is currently under investigation, but by analogy to the well-described 12-lipoxygenase pathway, we suggest that (8R)-HPETE and 8-KETE may serve as second messengers in Aplysia cholinoceptive neurons. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.272.30.18673 |