Loading…
Factors modulating supernumerary hair cell production in the postnatal rat cochlea in vitro
It has been shown in the past that extra hair cells or supernumerary cells can be produced when neonatal cochleae are maintained in vitro. In this report, we investigated the effects of the culture methods, molecules and growth factors that are thought to be involved in cell proliferation. Quantitat...
Saved in:
Published in: | International journal of developmental neuroscience 1997-07, Vol.15 (4-5), p.497-507 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It has been shown in the past that extra hair cells or supernumerary cells can be produced when neonatal cochleae are maintained in vitro. In this report, we investigated the effects of the culture methods, molecules and growth factors that are thought to be involved in cell proliferation. Quantitative studies of supernumerary hair cells were made by measuring the cell density over the entire spiral lamina at two postnatal stages: birth and 3 days after birth. With a standard feeding solution without serum, a difference in cell density was observed between the two methods of culture. Cochlear explants in a standard feeding solution supplemented with serum showed an increase of cell density only when the explantation is made at birth. Retinoic acid added to the standard feeding solution did not increase the hair cell density, while insulin induced an increase, especially at 5 μg/ml. Several growth factors were tested. Epidermal growth factor (EGF) presented a dose dependent effect with an increase of up to 30% of hair cell density that was observed in the basal region when the explantation was made at birth. Transforming growth factor‐a did not induce an increase of cell density, whereas transforming growth factor‐β presented an effect on hair cell density, with a dose dependent effect reaching 37.4% for the basal inner hair cells. Interpretation of these results is limited because of the lack of data concerning the presence of specific membrane receptors. One possibility is that insulin stimulates hair cell differentiation from existing undifferentiated cells. Another hypothesis may be related to the EGF and transforming growth factor‐β, where these molecules might induce transdifferentiation of cells by acting on the transmembrane molecules and the extracellular matrix. |
---|---|
ISSN: | 0736-5748 1873-474X |
DOI: | 10.1016/S0736-5748(96)00106-2 |