Loading…

Mutant Drosophila embryos in which all cells adopt a neural fate

In the Drosophila embryo, early developmental decisions lead to all cells adopting one of several initial fates, such as those characteristic of the germ layers. The central nervous system is formed subsequently from the neurogenic region of the ectoderm, in which progenitor cells of the neuroblasts...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 1989-10, Vol.341 (6241), p.442-444
Main Authors: Bourouis, M, Heitzler, P, El Messal, M, Simpson, P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the Drosophila embryo, early developmental decisions lead to all cells adopting one of several initial fates, such as those characteristic of the germ layers. The central nervous system is formed subsequently from the neurogenic region of the ectoderm, in which progenitor cells of the neuroblasts and ventral epidermis are intermingled. Two classes of genes govern the segregation of neuroblasts and peripheral sensory organs. The pro-neural class of genes, for example, the achaete-scute complex, participates in the initial decision to make each uniquely positioned neuroblast or sensory organ, but are initially expressed in groups of cells. The segregation of a neuroblast or sensory organ from an equivalent group of equipotential cells involves a mechanism of lateral inhibition whereby the future epidermal cells are prevented from engaging in the primary dominant neural fate. In the absence of this inhibitory signal, all cells of the group will become neural by default. The neurogenic class of genes is thought to mediate these cell interactions. Here we report that cells in embryos mutant for shaggy which are unable to adopt any of the early initial fates, instead develop neural characteristics.
ISSN:0028-0836
1476-4687
DOI:10.1038/341442a0