Loading…

Measurement and characterization of postischemic free radical generation in the isolated perfused heart

Electron paramagnetic resonance spectroscopy has been applied to measure radical generation in the postischemic heart; however, there is controversy regarding the methods used and the conclusion as to whether radicals are generated. In order to resolve this controversy, direct and spin trapping meas...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1989-11, Vol.264 (32), p.18890-18895
Main Authors: Zweier, J L, Kuppusamy, P, Williams, R, Rayburn, B K, Smith, D, Weisfeldt, M L, Flaherty, J T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electron paramagnetic resonance spectroscopy has been applied to measure radical generation in the postischemic heart; however, there is controversy regarding the methods used and the conclusion as to whether radicals are generated. In order to resolve this controversy, direct and spin trapping measurements of the time course and mechanisms of radical generation were performed in isolated perfused rabbit hearts. In reperfused tissue, 3 prominent radical signals are observed: A, isotropic g = 2.004 suggestive of a semiquinone; B, anisotropic g‖ = 2.033 and g⊥ = 2.005 suggestive of ROO●; and C, a triplet g = 2.000 and aN = 24 G suggestive of a nitrogen centered radical. B and C, however, are highly labile and disappear at temperatures probably encountered in some previous studies. In normally perfused hearts, A is observed with only small amounts of B and C. During ischemia, B and C increase reaching a maximum after 45 min while A decreases. On reflow with oxygenated perfusate all 3 signals increase. With varying duration of ischemia and reflow, peak signal intensities occurred after 15 s of reflow following 30 min of ischemia. Reperfusion with superoxide dismutase, deferoxamine, or mannitol abolished the reperfusion increase of B. Measurements performed with the spin trap 5,5′-dimethyl-1-pyrroline-N-oxide (DMPO) demonstrated a similar time course of radical generation with prominent DMPO-OH and DMPO-R signals peaking between 10 and 20 s of reflow. Superoxide dismutase and deferoxamine also quenched these signals. Thus, ●O2− derived ●OH, R●, and ROO● radicals are generated in postischemic myocardium. While the experimental techniques used can result in loss of intrinsic radicals and generation of extraneous radicals, with proper care and controls valid measurements of free radicals in biological tissues can be performed.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)47240-2