Loading…
The hydrolysis of extracellular adenine nucleotides by arterial smooth muscle cells. Regulation of adenosine production at the cell surface
The extracellular reaction sequence ATP---ADP---AMP---adenosine participates in regulating the time course of cellular response during crisis or signaling events, such as thrombus formation or neurotransmission. We have investigated the whole time course of hydrolysis of ATP to adenosine by recircul...
Saved in:
Published in: | The Journal of biological chemistry 1989-11, Vol.264 (32), p.18986-18992 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The extracellular reaction sequence ATP---ADP---AMP---adenosine participates in regulating the time course of cellular
response during crisis or signaling events, such as thrombus formation or neurotransmission. We have investigated the whole
time course of hydrolysis of ATP to adenosine by recirculating adenine nucleotide substrates over smooth muscle cells attached
to polystyrene beads. Kinetic parameters were estimated for each reaction by fitting observed time courses to models of the
pathway. In spite of the inhibition of 5'-nucleotidase by ADP, adenosine was produced very rapidly by smooth muscle cells.
Comparisons of the apparent Km values of ADPase and 5'-nucleotidase (determined from experiments in which each substrate was
used as the initial substrate with Km values observed when each substrate was supplied from the upstream reaction) suggest
that the local concentrations of substrate supplied from the preceding reactions are very much higher than those in the bulk
phase. This enhancement of efficiency overcomes the effect of the feed-forward inhibition to give rise to very rapid adenosine
production from ADP or ATP. These observations are in marked contrast to our previous findings with endothelial cells (Gordon,
E. L., Pearson, J. D., and Slakey, L. L. (1986) J. Biol. Chem. 261, 15496-15504), on which feed-forward inhibition causes
a profound lag in adenosine production from adenine nucleotides and on which there are no apparent surface effects on substrate
delivery. |
---|---|
ISSN: | 0021-9258 1083-351X |