Loading…

Equally parsimonious pathways through an RNA sequence space are not equally likely

An experimental system for determining the potential ability of sequences resembling 5S ribosomal RNA (rRNA) to perform as functional 5S rRNAs in vivo in the Escherichia coli cellular environment was devised previously. Presumably, the only 5S rRNA sequences that would have been fixed by ancestral p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular evolution 1997-09, Vol.45 (3), p.278-284
Main Authors: Lee, Y. H., DSouza, L. M., Fox, G. E.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An experimental system for determining the potential ability of sequences resembling 5S ribosomal RNA (rRNA) to perform as functional 5S rRNAs in vivo in the Escherichia coli cellular environment was devised previously. Presumably, the only 5S rRNA sequences that would have been fixed by ancestral populations are ones that were functionally valid, and hence the actual historical paths taken through RNA sequence space during 5S rRNA evolution would have most likely utilized valid sequences. Herein, we examine the potential validity of all sequence intermediates along alternative equally parsimonious trajectories through RNA sequence space which connect two pairs of sequences that had previously been shown to behave as valid 5S rRNAs in E. coli. The first trajectory requires a total of four changes. The 14 sequence intermediates provide 24 apparently equally parsimonious paths by which the transition could occur. The second trajectory involves three changes, six intermediate sequences, and six potentially equally parsimonious paths. In total, only eight of the 20 sequence intermediates were found to be clearly invalid. As a consequence of the position of these invalid intermediates in the sequence space, seven of the 30 possible paths consisted of exclusively valid sequences. In several cases, the apparent validity/invalidity of the intermediate sequences could not be anticipated on the basis of current knowledge of the 5S rRNA structure. This suggests that the interdependencies in RNA sequence space may be more complex than currently appreciated. If ancestral sequences predicted by parsimony are to be regarded as actual historical sequences, then the present results would suggest that they should also satisfy a validity requirement and that, in at least limited cases, this conjecture can be tested experimentally.
ISSN:0022-2844
1432-1432
DOI:10.1007/PL00006231