Loading…

Projection structure of VP6, the rotavirus inner capsid protein, and comparison with bluetongue VP7

The rotavirus nucleocapsid protein (VP6) is the major structural protein of inner capsid particles (ICP). VP6 is essential for RNA transcription and binds to a virally encoded glycoprotein receptor (NSP4) involved in the rotavirus assembly pathway. To explore the structure of VP6, two-dimensional (2...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular biology 1997-09, Vol.272 (3), p.362-368
Main Authors: Hsu, G G, Bellamy, A R, Yeager, M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rotavirus nucleocapsid protein (VP6) is the major structural protein of inner capsid particles (ICP). VP6 is essential for RNA transcription and binds to a virally encoded glycoprotein receptor (NSP4) involved in the rotavirus assembly pathway. To explore the structure of VP6, two-dimensional (2D) crystals of VP6 were generated and examined by electron microscopy and image processing. Fourier transforms computed from low-dose images of negatively stained 2D VP6 crystals displayed complete data to 13 A resolution for p6 plane group symmetry. To correct for the resolution dependent fall-off of the amplitudes derived from electron microscopic images, the rotavirus VP6 amplitudes were scaled to the bluetongue VP7 amplitudes derived from the atomic model by applying a B factor of -360 A-2. The unit cell (a=b=101(+/-2)A, gamma=120(+/-1) degrees) contains two VP6 trimers, each composed of three roughly circular subunits approximately 30 A in diameter. The trimeric organization of VP6 is similar to the oligomeric structure of VP6 when assembled in T=13l icosahedral inner capsid particles at 25 to 40 A resolution. However, a channel at the center of the trimer is better resolved in our map at 15 A resolution. The projection structure of rotavirus VP6 was compared to the homologous protein (VP7) of bluetongue virus, which is also a member of the family of Reoviridae. Notably, both VP6 and bluetongue VP7 assemble as 260 capsomers on the surface of the inner capsid. To compare VP6 and VP7, a projection map of bluetongue VP7 at 15 A resolution was generated using the atomic model derived by X-ray crystallography. VP6 and VP7 both exhibit a trimeric organization with a central channel, even though the alignment identity between the 45 kDa VP6 and the 38 kDa VP7 primary sequences is only 12%. The ability of VP6 to form well-ordered 2D crystals should enable a higher resolution structure analysis by cryo-electron microscopy that will extend our understanding of the icosahedral ICP structure, clarify the mechanism by which VP6 interacts with the NSP4 receptor, and allow a more detailed comparison of VP6 and VP7.
ISSN:0022-2836
DOI:10.1006/jmbi.1997.1179