Loading…
A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme
Genetic disruption of the Saccharomyces cerevisiae C-4 sterol methyl oxidase ERG25 gene leads to sterol auxotrophy. We have characterized a suppression system that requires two mutations to restore viability to this disrupted strain. One suppressor mutation is erg11, which is blocked in 14 alpha-dem...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1997-10, Vol.94 (21), p.11173-11178 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c567t-9303e1bda149c4447bb8526c7aec34e7e7cb756bf685e8265a0dfe2a6a26a8a33 |
---|---|
cites | cdi_FETCH-LOGICAL-c567t-9303e1bda149c4447bb8526c7aec34e7e7cb756bf685e8265a0dfe2a6a26a8a33 |
container_end_page | 11178 |
container_issue | 21 |
container_start_page | 11173 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 94 |
creator | Gachotte, D Pierson, C.A Lees, N.D Barbuch, R Koegel, C Bard, M |
description | Genetic disruption of the Saccharomyces cerevisiae C-4 sterol methyl oxidase ERG25 gene leads to sterol auxotrophy. We have characterized a suppression system that requires two mutations to restore viability to this disrupted strain. One suppressor mutation is erg11, which is blocked in 14 alpha-demethylation of lanosterol and is itself an auxotroph. The second suppressor mutation required is either slu1 or slu2 (suppressor of lanosterol utilization). These mutations are leaky versions of HEM2 and HEM4, respectively; addition of exogenous hemin reverses the suppressing effects of slu1 and slu2. Suppression of erg25 by erg11 slu1 (or erg11 slu2) results in a slow-growing strain in which lanosterol, the first sterol in the pathway, accumulates. This result indicates that endogenously synthesized lanosterol can substitute for ergosterol and support growth. In the triple mutants, all but 1 (ERG6) of the 13 subsequent reactions of the ergosterol pathway are inactive. Azole antibiotics (clotrimazole, ketoconazole, and itraconazole) widely used to combat fungal infections are known to do so by inhibiting the ERG11 gene product, the 14 alpha-demethylase. In this investigation, we demonstrate that treatment of the sterol auxotrophs erg25 slu1 or erg25 slu2 with azole antibiotics paradoxically restores viability to these strains in the absence of sterol supplementation via the suppression system we have described |
doi_str_mv | 10.1073/pnas.94.21.11173 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_79325211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43257</jstor_id><sourcerecordid>43257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-9303e1bda149c4447bb8526c7aec34e7e7cb756bf685e8265a0dfe2a6a26a8a33</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxVcIVELhjpAQFgdUDhv8tfZa4lJV5UOqxAF6tma9s8lGm3WwvVXDX1-HRIFyKCeP_H5vNDOvKF4yOmdUiw-bEeLcyDlnc8aYFo-KGaOGlUoa-riYUcp1WUsunxbPYlxRSk1V05PixAiuqprNisU52SLERGLC4AcC061PwW-W5AzDglfvSR9JwOgmbEmzJdC2fer9SHxH4JcfkMCY-m4aFzDEXLcZbieX4QFvMH9lbolrfF486TKBLw7vaXH96fLHxZfy6tvnrxfnV6WrlE6lEVQga1pg0jgppW6auuLKaUAnJGrUrtGVajpVV1jnHYC2HXJQwBXUIMRp8XHfdzM1a2wdjinAYDehX0PYWg-9va-M_dIu_I3lQlKV7e8O9uB_ThiTXffR4TDAiH6KVufDVZyx_4JMca6Mkhl8-w-48lMY8w0sp0xyLiuTIbqHXPAxBuyOAzNqd0HbXdDWSMuZ_R10trz-e9Gj4ZBs1t8c9J3zqN7rcPYwYbtpGBLepoy-2qOrmHw4sjIfQ_-ZpANvYRH6aK-_M2M01Xm3h3QlasHFHd3D1_c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201422459</pqid></control><display><type>article</type><title>A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Gachotte, D ; Pierson, C.A ; Lees, N.D ; Barbuch, R ; Koegel, C ; Bard, M</creator><creatorcontrib>Gachotte, D ; Pierson, C.A ; Lees, N.D ; Barbuch, R ; Koegel, C ; Bard, M</creatorcontrib><description>Genetic disruption of the Saccharomyces cerevisiae C-4 sterol methyl oxidase ERG25 gene leads to sterol auxotrophy. We have characterized a suppression system that requires two mutations to restore viability to this disrupted strain. One suppressor mutation is erg11, which is blocked in 14 alpha-demethylation of lanosterol and is itself an auxotroph. The second suppressor mutation required is either slu1 or slu2 (suppressor of lanosterol utilization). These mutations are leaky versions of HEM2 and HEM4, respectively; addition of exogenous hemin reverses the suppressing effects of slu1 and slu2. Suppression of erg25 by erg11 slu1 (or erg11 slu2) results in a slow-growing strain in which lanosterol, the first sterol in the pathway, accumulates. This result indicates that endogenously synthesized lanosterol can substitute for ergosterol and support growth. In the triple mutants, all but 1 (ERG6) of the 13 subsequent reactions of the ergosterol pathway are inactive. Azole antibiotics (clotrimazole, ketoconazole, and itraconazole) widely used to combat fungal infections are known to do so by inhibiting the ERG11 gene product, the 14 alpha-demethylase. In this investigation, we demonstrate that treatment of the sterol auxotrophs erg25 slu1 or erg25 slu2 with azole antibiotics paradoxically restores viability to these strains in the absence of sterol supplementation via the suppression system we have described</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.94.21.11173</identifier><identifier>PMID: 9326581</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Antibiotics ; Antifungal Agents - pharmacology ; Antifungals ; Azoles ; Azoles - pharmacology ; Bacteria ; Bards ; Biochemistry ; Biological Sciences ; Biosynthesis ; C-4 STEROL METHYL OXIDASE ; CITOCROMO P450 ; CLOTRIMAZOLE ; Clotrimazole - pharmacology ; CROSSBREDS ; CYTOCHROME P450 ; DRUGS ; ERGOSTEROL ; ESTEROIDES ; ESTEROLES ; FENOTIPOS ; FONGICIDE ; FUNGICIDAS ; FUNGICIDES ; GENE ; GENES ; Genes, Fungal ; Genetic mutation ; GENETIC TRANSFORMATION ; Genotype ; HAEMOGLOBIN ; Heme - metabolism ; HEMOGLOBINA ; HEMOGLOBINE ; INHIBITOR GENES ; ITRACONAZOLE ; Itraconazole - pharmacology ; KETOCONAZOLE ; Ketoconazole - pharmacology ; LANOSTEROL ; Lanosterol - metabolism ; LANOSTEROL 14ALPHA-DEMETHYLASE ; LIPOGENESE ; LIPOGENESIS ; MEDICAMENT ; MEDICAMENTOS ; Mixed Function Oxygenases - genetics ; MUTACION ; MUTANT ; MUTANTES ; MUTANTS ; MUTATION ; OXIDOREDUCTASES ; OXIDORREDUCTASAS ; OXYDOREDUCTASE ; PHENOTYPE ; PHENOTYPES ; Plasmids ; PRODUCTOS DEL CRUZAMIENTO ; PRODUIT DE CROISEMENT ; Radiocarbon ; SACCHAROMYCES ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - physiology ; SEGREGACION ; SEGREGATION ; STEROIDE ; STEROIDS ; STEROL ; STEROLS ; Sterols - metabolism ; Suppression, Genetic ; SUPPRESSOR GENES ; SUPPRESSOR MUTATIONS ; TRANSFORMACION GENETICA ; TRANSFORMATION GENETIQUE ; UNSPECIFIC MONOOXYGENASE ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1997-10, Vol.94 (21), p.11173-11178</ispartof><rights>Copyright 1993-1997 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Oct 14, 1997</rights><rights>Copyright © 1997, The National Academy of Sciences of the USA 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-9303e1bda149c4447bb8526c7aec34e7e7cb756bf685e8265a0dfe2a6a26a8a33</citedby><cites>FETCH-LOGICAL-c567t-9303e1bda149c4447bb8526c7aec34e7e7cb756bf685e8265a0dfe2a6a26a8a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/94/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43257$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43257$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9326581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gachotte, D</creatorcontrib><creatorcontrib>Pierson, C.A</creatorcontrib><creatorcontrib>Lees, N.D</creatorcontrib><creatorcontrib>Barbuch, R</creatorcontrib><creatorcontrib>Koegel, C</creatorcontrib><creatorcontrib>Bard, M</creatorcontrib><title>A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Genetic disruption of the Saccharomyces cerevisiae C-4 sterol methyl oxidase ERG25 gene leads to sterol auxotrophy. We have characterized a suppression system that requires two mutations to restore viability to this disrupted strain. One suppressor mutation is erg11, which is blocked in 14 alpha-demethylation of lanosterol and is itself an auxotroph. The second suppressor mutation required is either slu1 or slu2 (suppressor of lanosterol utilization). These mutations are leaky versions of HEM2 and HEM4, respectively; addition of exogenous hemin reverses the suppressing effects of slu1 and slu2. Suppression of erg25 by erg11 slu1 (or erg11 slu2) results in a slow-growing strain in which lanosterol, the first sterol in the pathway, accumulates. This result indicates that endogenously synthesized lanosterol can substitute for ergosterol and support growth. In the triple mutants, all but 1 (ERG6) of the 13 subsequent reactions of the ergosterol pathway are inactive. Azole antibiotics (clotrimazole, ketoconazole, and itraconazole) widely used to combat fungal infections are known to do so by inhibiting the ERG11 gene product, the 14 alpha-demethylase. In this investigation, we demonstrate that treatment of the sterol auxotrophs erg25 slu1 or erg25 slu2 with azole antibiotics paradoxically restores viability to these strains in the absence of sterol supplementation via the suppression system we have described</description><subject>Antibiotics</subject><subject>Antifungal Agents - pharmacology</subject><subject>Antifungals</subject><subject>Azoles</subject><subject>Azoles - pharmacology</subject><subject>Bacteria</subject><subject>Bards</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>C-4 STEROL METHYL OXIDASE</subject><subject>CITOCROMO P450</subject><subject>CLOTRIMAZOLE</subject><subject>Clotrimazole - pharmacology</subject><subject>CROSSBREDS</subject><subject>CYTOCHROME P450</subject><subject>DRUGS</subject><subject>ERGOSTEROL</subject><subject>ESTEROIDES</subject><subject>ESTEROLES</subject><subject>FENOTIPOS</subject><subject>FONGICIDE</subject><subject>FUNGICIDAS</subject><subject>FUNGICIDES</subject><subject>GENE</subject><subject>GENES</subject><subject>Genes, Fungal</subject><subject>Genetic mutation</subject><subject>GENETIC TRANSFORMATION</subject><subject>Genotype</subject><subject>HAEMOGLOBIN</subject><subject>Heme - metabolism</subject><subject>HEMOGLOBINA</subject><subject>HEMOGLOBINE</subject><subject>INHIBITOR GENES</subject><subject>ITRACONAZOLE</subject><subject>Itraconazole - pharmacology</subject><subject>KETOCONAZOLE</subject><subject>Ketoconazole - pharmacology</subject><subject>LANOSTEROL</subject><subject>Lanosterol - metabolism</subject><subject>LANOSTEROL 14ALPHA-DEMETHYLASE</subject><subject>LIPOGENESE</subject><subject>LIPOGENESIS</subject><subject>MEDICAMENT</subject><subject>MEDICAMENTOS</subject><subject>Mixed Function Oxygenases - genetics</subject><subject>MUTACION</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>MUTATION</subject><subject>OXIDOREDUCTASES</subject><subject>OXIDORREDUCTASAS</subject><subject>OXYDOREDUCTASE</subject><subject>PHENOTYPE</subject><subject>PHENOTYPES</subject><subject>Plasmids</subject><subject>PRODUCTOS DEL CRUZAMIENTO</subject><subject>PRODUIT DE CROISEMENT</subject><subject>Radiocarbon</subject><subject>SACCHAROMYCES</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>SEGREGACION</subject><subject>SEGREGATION</subject><subject>STEROIDE</subject><subject>STEROIDS</subject><subject>STEROL</subject><subject>STEROLS</subject><subject>Sterols - metabolism</subject><subject>Suppression, Genetic</subject><subject>SUPPRESSOR GENES</subject><subject>SUPPRESSOR MUTATIONS</subject><subject>TRANSFORMACION GENETICA</subject><subject>TRANSFORMATION GENETIQUE</subject><subject>UNSPECIFIC MONOOXYGENASE</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkc1vEzEQxVcIVELhjpAQFgdUDhv8tfZa4lJV5UOqxAF6tma9s8lGm3WwvVXDX1-HRIFyKCeP_H5vNDOvKF4yOmdUiw-bEeLcyDlnc8aYFo-KGaOGlUoa-riYUcp1WUsunxbPYlxRSk1V05PixAiuqprNisU52SLERGLC4AcC061PwW-W5AzDglfvSR9JwOgmbEmzJdC2fer9SHxH4JcfkMCY-m4aFzDEXLcZbieX4QFvMH9lbolrfF486TKBLw7vaXH96fLHxZfy6tvnrxfnV6WrlE6lEVQga1pg0jgppW6auuLKaUAnJGrUrtGVajpVV1jnHYC2HXJQwBXUIMRp8XHfdzM1a2wdjinAYDehX0PYWg-9va-M_dIu_I3lQlKV7e8O9uB_ThiTXffR4TDAiH6KVufDVZyx_4JMca6Mkhl8-w-48lMY8w0sp0xyLiuTIbqHXPAxBuyOAzNqd0HbXdDWSMuZ_R10trz-e9Gj4ZBs1t8c9J3zqN7rcPYwYbtpGBLepoy-2qOrmHw4sjIfQ_-ZpANvYRH6aK-_M2M01Xm3h3QlasHFHd3D1_c</recordid><startdate>19971014</startdate><enddate>19971014</enddate><creator>Gachotte, D</creator><creator>Pierson, C.A</creator><creator>Lees, N.D</creator><creator>Barbuch, R</creator><creator>Koegel, C</creator><creator>Bard, M</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences of the USA</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19971014</creationdate><title>A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme</title><author>Gachotte, D ; Pierson, C.A ; Lees, N.D ; Barbuch, R ; Koegel, C ; Bard, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-9303e1bda149c4447bb8526c7aec34e7e7cb756bf685e8265a0dfe2a6a26a8a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Antibiotics</topic><topic>Antifungal Agents - pharmacology</topic><topic>Antifungals</topic><topic>Azoles</topic><topic>Azoles - pharmacology</topic><topic>Bacteria</topic><topic>Bards</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>C-4 STEROL METHYL OXIDASE</topic><topic>CITOCROMO P450</topic><topic>CLOTRIMAZOLE</topic><topic>Clotrimazole - pharmacology</topic><topic>CROSSBREDS</topic><topic>CYTOCHROME P450</topic><topic>DRUGS</topic><topic>ERGOSTEROL</topic><topic>ESTEROIDES</topic><topic>ESTEROLES</topic><topic>FENOTIPOS</topic><topic>FONGICIDE</topic><topic>FUNGICIDAS</topic><topic>FUNGICIDES</topic><topic>GENE</topic><topic>GENES</topic><topic>Genes, Fungal</topic><topic>Genetic mutation</topic><topic>GENETIC TRANSFORMATION</topic><topic>Genotype</topic><topic>HAEMOGLOBIN</topic><topic>Heme - metabolism</topic><topic>HEMOGLOBINA</topic><topic>HEMOGLOBINE</topic><topic>INHIBITOR GENES</topic><topic>ITRACONAZOLE</topic><topic>Itraconazole - pharmacology</topic><topic>KETOCONAZOLE</topic><topic>Ketoconazole - pharmacology</topic><topic>LANOSTEROL</topic><topic>Lanosterol - metabolism</topic><topic>LANOSTEROL 14ALPHA-DEMETHYLASE</topic><topic>LIPOGENESE</topic><topic>LIPOGENESIS</topic><topic>MEDICAMENT</topic><topic>MEDICAMENTOS</topic><topic>Mixed Function Oxygenases - genetics</topic><topic>MUTACION</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>MUTATION</topic><topic>OXIDOREDUCTASES</topic><topic>OXIDORREDUCTASAS</topic><topic>OXYDOREDUCTASE</topic><topic>PHENOTYPE</topic><topic>PHENOTYPES</topic><topic>Plasmids</topic><topic>PRODUCTOS DEL CRUZAMIENTO</topic><topic>PRODUIT DE CROISEMENT</topic><topic>Radiocarbon</topic><topic>SACCHAROMYCES</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>SEGREGACION</topic><topic>SEGREGATION</topic><topic>STEROIDE</topic><topic>STEROIDS</topic><topic>STEROL</topic><topic>STEROLS</topic><topic>Sterols - metabolism</topic><topic>Suppression, Genetic</topic><topic>SUPPRESSOR GENES</topic><topic>SUPPRESSOR MUTATIONS</topic><topic>TRANSFORMACION GENETICA</topic><topic>TRANSFORMATION GENETIQUE</topic><topic>UNSPECIFIC MONOOXYGENASE</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gachotte, D</creatorcontrib><creatorcontrib>Pierson, C.A</creatorcontrib><creatorcontrib>Lees, N.D</creatorcontrib><creatorcontrib>Barbuch, R</creatorcontrib><creatorcontrib>Koegel, C</creatorcontrib><creatorcontrib>Bard, M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gachotte, D</au><au>Pierson, C.A</au><au>Lees, N.D</au><au>Barbuch, R</au><au>Koegel, C</au><au>Bard, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1997-10-14</date><risdate>1997</risdate><volume>94</volume><issue>21</issue><spage>11173</spage><epage>11178</epage><pages>11173-11178</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Genetic disruption of the Saccharomyces cerevisiae C-4 sterol methyl oxidase ERG25 gene leads to sterol auxotrophy. We have characterized a suppression system that requires two mutations to restore viability to this disrupted strain. One suppressor mutation is erg11, which is blocked in 14 alpha-demethylation of lanosterol and is itself an auxotroph. The second suppressor mutation required is either slu1 or slu2 (suppressor of lanosterol utilization). These mutations are leaky versions of HEM2 and HEM4, respectively; addition of exogenous hemin reverses the suppressing effects of slu1 and slu2. Suppression of erg25 by erg11 slu1 (or erg11 slu2) results in a slow-growing strain in which lanosterol, the first sterol in the pathway, accumulates. This result indicates that endogenously synthesized lanosterol can substitute for ergosterol and support growth. In the triple mutants, all but 1 (ERG6) of the 13 subsequent reactions of the ergosterol pathway are inactive. Azole antibiotics (clotrimazole, ketoconazole, and itraconazole) widely used to combat fungal infections are known to do so by inhibiting the ERG11 gene product, the 14 alpha-demethylase. In this investigation, we demonstrate that treatment of the sterol auxotrophs erg25 slu1 or erg25 slu2 with azole antibiotics paradoxically restores viability to these strains in the absence of sterol supplementation via the suppression system we have described</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9326581</pmid><doi>10.1073/pnas.94.21.11173</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1997-10, Vol.94 (21), p.11173-11178 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_79325211 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Antibiotics Antifungal Agents - pharmacology Antifungals Azoles Azoles - pharmacology Bacteria Bards Biochemistry Biological Sciences Biosynthesis C-4 STEROL METHYL OXIDASE CITOCROMO P450 CLOTRIMAZOLE Clotrimazole - pharmacology CROSSBREDS CYTOCHROME P450 DRUGS ERGOSTEROL ESTEROIDES ESTEROLES FENOTIPOS FONGICIDE FUNGICIDAS FUNGICIDES GENE GENES Genes, Fungal Genetic mutation GENETIC TRANSFORMATION Genotype HAEMOGLOBIN Heme - metabolism HEMOGLOBINA HEMOGLOBINE INHIBITOR GENES ITRACONAZOLE Itraconazole - pharmacology KETOCONAZOLE Ketoconazole - pharmacology LANOSTEROL Lanosterol - metabolism LANOSTEROL 14ALPHA-DEMETHYLASE LIPOGENESE LIPOGENESIS MEDICAMENT MEDICAMENTOS Mixed Function Oxygenases - genetics MUTACION MUTANT MUTANTES MUTANTS MUTATION OXIDOREDUCTASES OXIDORREDUCTASAS OXYDOREDUCTASE PHENOTYPE PHENOTYPES Plasmids PRODUCTOS DEL CRUZAMIENTO PRODUIT DE CROISEMENT Radiocarbon SACCHAROMYCES SACCHAROMYCES CEREVISIAE Saccharomyces cerevisiae - drug effects Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - physiology SEGREGACION SEGREGATION STEROIDE STEROIDS STEROL STEROLS Sterols - metabolism Suppression, Genetic SUPPRESSOR GENES SUPPRESSOR MUTATIONS TRANSFORMACION GENETICA TRANSFORMATION GENETIQUE UNSPECIFIC MONOOXYGENASE Yeasts |
title | A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20yeast%20sterol%20auxotroph%20(erg25)%20is%20rescued%20by%20addition%20of%20azole%20antifungals%20and%20reduced%20levels%20of%20heme&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gachotte,%20D&rft.date=1997-10-14&rft.volume=94&rft.issue=21&rft.spage=11173&rft.epage=11178&rft.pages=11173-11178&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.94.21.11173&rft_dat=%3Cjstor_proqu%3E43257%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-9303e1bda149c4447bb8526c7aec34e7e7cb756bf685e8265a0dfe2a6a26a8a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201422459&rft_id=info:pmid/9326581&rft_jstor_id=43257&rfr_iscdi=true |