Loading…

A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme

Genetic disruption of the Saccharomyces cerevisiae C-4 sterol methyl oxidase ERG25 gene leads to sterol auxotrophy. We have characterized a suppression system that requires two mutations to restore viability to this disrupted strain. One suppressor mutation is erg11, which is blocked in 14 alpha-dem...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1997-10, Vol.94 (21), p.11173-11178
Main Authors: Gachotte, D, Pierson, C.A, Lees, N.D, Barbuch, R, Koegel, C, Bard, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c567t-9303e1bda149c4447bb8526c7aec34e7e7cb756bf685e8265a0dfe2a6a26a8a33
cites cdi_FETCH-LOGICAL-c567t-9303e1bda149c4447bb8526c7aec34e7e7cb756bf685e8265a0dfe2a6a26a8a33
container_end_page 11178
container_issue 21
container_start_page 11173
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 94
creator Gachotte, D
Pierson, C.A
Lees, N.D
Barbuch, R
Koegel, C
Bard, M
description Genetic disruption of the Saccharomyces cerevisiae C-4 sterol methyl oxidase ERG25 gene leads to sterol auxotrophy. We have characterized a suppression system that requires two mutations to restore viability to this disrupted strain. One suppressor mutation is erg11, which is blocked in 14 alpha-demethylation of lanosterol and is itself an auxotroph. The second suppressor mutation required is either slu1 or slu2 (suppressor of lanosterol utilization). These mutations are leaky versions of HEM2 and HEM4, respectively; addition of exogenous hemin reverses the suppressing effects of slu1 and slu2. Suppression of erg25 by erg11 slu1 (or erg11 slu2) results in a slow-growing strain in which lanosterol, the first sterol in the pathway, accumulates. This result indicates that endogenously synthesized lanosterol can substitute for ergosterol and support growth. In the triple mutants, all but 1 (ERG6) of the 13 subsequent reactions of the ergosterol pathway are inactive. Azole antibiotics (clotrimazole, ketoconazole, and itraconazole) widely used to combat fungal infections are known to do so by inhibiting the ERG11 gene product, the 14 alpha-demethylase. In this investigation, we demonstrate that treatment of the sterol auxotrophs erg25 slu1 or erg25 slu2 with azole antibiotics paradoxically restores viability to these strains in the absence of sterol supplementation via the suppression system we have described
doi_str_mv 10.1073/pnas.94.21.11173
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_79325211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43257</jstor_id><sourcerecordid>43257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-9303e1bda149c4447bb8526c7aec34e7e7cb756bf685e8265a0dfe2a6a26a8a33</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxVcIVELhjpAQFgdUDhv8tfZa4lJV5UOqxAF6tma9s8lGm3WwvVXDX1-HRIFyKCeP_H5vNDOvKF4yOmdUiw-bEeLcyDlnc8aYFo-KGaOGlUoa-riYUcp1WUsunxbPYlxRSk1V05PixAiuqprNisU52SLERGLC4AcC061PwW-W5AzDglfvSR9JwOgmbEmzJdC2fer9SHxH4JcfkMCY-m4aFzDEXLcZbieX4QFvMH9lbolrfF486TKBLw7vaXH96fLHxZfy6tvnrxfnV6WrlE6lEVQga1pg0jgppW6auuLKaUAnJGrUrtGVajpVV1jnHYC2HXJQwBXUIMRp8XHfdzM1a2wdjinAYDehX0PYWg-9va-M_dIu_I3lQlKV7e8O9uB_ThiTXffR4TDAiH6KVufDVZyx_4JMca6Mkhl8-w-48lMY8w0sp0xyLiuTIbqHXPAxBuyOAzNqd0HbXdDWSMuZ_R10trz-e9Gj4ZBs1t8c9J3zqN7rcPYwYbtpGBLepoy-2qOrmHw4sjIfQ_-ZpANvYRH6aK-_M2M01Xm3h3QlasHFHd3D1_c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201422459</pqid></control><display><type>article</type><title>A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Gachotte, D ; Pierson, C.A ; Lees, N.D ; Barbuch, R ; Koegel, C ; Bard, M</creator><creatorcontrib>Gachotte, D ; Pierson, C.A ; Lees, N.D ; Barbuch, R ; Koegel, C ; Bard, M</creatorcontrib><description>Genetic disruption of the Saccharomyces cerevisiae C-4 sterol methyl oxidase ERG25 gene leads to sterol auxotrophy. We have characterized a suppression system that requires two mutations to restore viability to this disrupted strain. One suppressor mutation is erg11, which is blocked in 14 alpha-demethylation of lanosterol and is itself an auxotroph. The second suppressor mutation required is either slu1 or slu2 (suppressor of lanosterol utilization). These mutations are leaky versions of HEM2 and HEM4, respectively; addition of exogenous hemin reverses the suppressing effects of slu1 and slu2. Suppression of erg25 by erg11 slu1 (or erg11 slu2) results in a slow-growing strain in which lanosterol, the first sterol in the pathway, accumulates. This result indicates that endogenously synthesized lanosterol can substitute for ergosterol and support growth. In the triple mutants, all but 1 (ERG6) of the 13 subsequent reactions of the ergosterol pathway are inactive. Azole antibiotics (clotrimazole, ketoconazole, and itraconazole) widely used to combat fungal infections are known to do so by inhibiting the ERG11 gene product, the 14 alpha-demethylase. In this investigation, we demonstrate that treatment of the sterol auxotrophs erg25 slu1 or erg25 slu2 with azole antibiotics paradoxically restores viability to these strains in the absence of sterol supplementation via the suppression system we have described</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.94.21.11173</identifier><identifier>PMID: 9326581</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Antibiotics ; Antifungal Agents - pharmacology ; Antifungals ; Azoles ; Azoles - pharmacology ; Bacteria ; Bards ; Biochemistry ; Biological Sciences ; Biosynthesis ; C-4 STEROL METHYL OXIDASE ; CITOCROMO P450 ; CLOTRIMAZOLE ; Clotrimazole - pharmacology ; CROSSBREDS ; CYTOCHROME P450 ; DRUGS ; ERGOSTEROL ; ESTEROIDES ; ESTEROLES ; FENOTIPOS ; FONGICIDE ; FUNGICIDAS ; FUNGICIDES ; GENE ; GENES ; Genes, Fungal ; Genetic mutation ; GENETIC TRANSFORMATION ; Genotype ; HAEMOGLOBIN ; Heme - metabolism ; HEMOGLOBINA ; HEMOGLOBINE ; INHIBITOR GENES ; ITRACONAZOLE ; Itraconazole - pharmacology ; KETOCONAZOLE ; Ketoconazole - pharmacology ; LANOSTEROL ; Lanosterol - metabolism ; LANOSTEROL 14ALPHA-DEMETHYLASE ; LIPOGENESE ; LIPOGENESIS ; MEDICAMENT ; MEDICAMENTOS ; Mixed Function Oxygenases - genetics ; MUTACION ; MUTANT ; MUTANTES ; MUTANTS ; MUTATION ; OXIDOREDUCTASES ; OXIDORREDUCTASAS ; OXYDOREDUCTASE ; PHENOTYPE ; PHENOTYPES ; Plasmids ; PRODUCTOS DEL CRUZAMIENTO ; PRODUIT DE CROISEMENT ; Radiocarbon ; SACCHAROMYCES ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - physiology ; SEGREGACION ; SEGREGATION ; STEROIDE ; STEROIDS ; STEROL ; STEROLS ; Sterols - metabolism ; Suppression, Genetic ; SUPPRESSOR GENES ; SUPPRESSOR MUTATIONS ; TRANSFORMACION GENETICA ; TRANSFORMATION GENETIQUE ; UNSPECIFIC MONOOXYGENASE ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1997-10, Vol.94 (21), p.11173-11178</ispartof><rights>Copyright 1993-1997 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Oct 14, 1997</rights><rights>Copyright © 1997, The National Academy of Sciences of the USA 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-9303e1bda149c4447bb8526c7aec34e7e7cb756bf685e8265a0dfe2a6a26a8a33</citedby><cites>FETCH-LOGICAL-c567t-9303e1bda149c4447bb8526c7aec34e7e7cb756bf685e8265a0dfe2a6a26a8a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/94/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43257$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43257$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9326581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gachotte, D</creatorcontrib><creatorcontrib>Pierson, C.A</creatorcontrib><creatorcontrib>Lees, N.D</creatorcontrib><creatorcontrib>Barbuch, R</creatorcontrib><creatorcontrib>Koegel, C</creatorcontrib><creatorcontrib>Bard, M</creatorcontrib><title>A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Genetic disruption of the Saccharomyces cerevisiae C-4 sterol methyl oxidase ERG25 gene leads to sterol auxotrophy. We have characterized a suppression system that requires two mutations to restore viability to this disrupted strain. One suppressor mutation is erg11, which is blocked in 14 alpha-demethylation of lanosterol and is itself an auxotroph. The second suppressor mutation required is either slu1 or slu2 (suppressor of lanosterol utilization). These mutations are leaky versions of HEM2 and HEM4, respectively; addition of exogenous hemin reverses the suppressing effects of slu1 and slu2. Suppression of erg25 by erg11 slu1 (or erg11 slu2) results in a slow-growing strain in which lanosterol, the first sterol in the pathway, accumulates. This result indicates that endogenously synthesized lanosterol can substitute for ergosterol and support growth. In the triple mutants, all but 1 (ERG6) of the 13 subsequent reactions of the ergosterol pathway are inactive. Azole antibiotics (clotrimazole, ketoconazole, and itraconazole) widely used to combat fungal infections are known to do so by inhibiting the ERG11 gene product, the 14 alpha-demethylase. In this investigation, we demonstrate that treatment of the sterol auxotrophs erg25 slu1 or erg25 slu2 with azole antibiotics paradoxically restores viability to these strains in the absence of sterol supplementation via the suppression system we have described</description><subject>Antibiotics</subject><subject>Antifungal Agents - pharmacology</subject><subject>Antifungals</subject><subject>Azoles</subject><subject>Azoles - pharmacology</subject><subject>Bacteria</subject><subject>Bards</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>C-4 STEROL METHYL OXIDASE</subject><subject>CITOCROMO P450</subject><subject>CLOTRIMAZOLE</subject><subject>Clotrimazole - pharmacology</subject><subject>CROSSBREDS</subject><subject>CYTOCHROME P450</subject><subject>DRUGS</subject><subject>ERGOSTEROL</subject><subject>ESTEROIDES</subject><subject>ESTEROLES</subject><subject>FENOTIPOS</subject><subject>FONGICIDE</subject><subject>FUNGICIDAS</subject><subject>FUNGICIDES</subject><subject>GENE</subject><subject>GENES</subject><subject>Genes, Fungal</subject><subject>Genetic mutation</subject><subject>GENETIC TRANSFORMATION</subject><subject>Genotype</subject><subject>HAEMOGLOBIN</subject><subject>Heme - metabolism</subject><subject>HEMOGLOBINA</subject><subject>HEMOGLOBINE</subject><subject>INHIBITOR GENES</subject><subject>ITRACONAZOLE</subject><subject>Itraconazole - pharmacology</subject><subject>KETOCONAZOLE</subject><subject>Ketoconazole - pharmacology</subject><subject>LANOSTEROL</subject><subject>Lanosterol - metabolism</subject><subject>LANOSTEROL 14ALPHA-DEMETHYLASE</subject><subject>LIPOGENESE</subject><subject>LIPOGENESIS</subject><subject>MEDICAMENT</subject><subject>MEDICAMENTOS</subject><subject>Mixed Function Oxygenases - genetics</subject><subject>MUTACION</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>MUTATION</subject><subject>OXIDOREDUCTASES</subject><subject>OXIDORREDUCTASAS</subject><subject>OXYDOREDUCTASE</subject><subject>PHENOTYPE</subject><subject>PHENOTYPES</subject><subject>Plasmids</subject><subject>PRODUCTOS DEL CRUZAMIENTO</subject><subject>PRODUIT DE CROISEMENT</subject><subject>Radiocarbon</subject><subject>SACCHAROMYCES</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>SEGREGACION</subject><subject>SEGREGATION</subject><subject>STEROIDE</subject><subject>STEROIDS</subject><subject>STEROL</subject><subject>STEROLS</subject><subject>Sterols - metabolism</subject><subject>Suppression, Genetic</subject><subject>SUPPRESSOR GENES</subject><subject>SUPPRESSOR MUTATIONS</subject><subject>TRANSFORMACION GENETICA</subject><subject>TRANSFORMATION GENETIQUE</subject><subject>UNSPECIFIC MONOOXYGENASE</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkc1vEzEQxVcIVELhjpAQFgdUDhv8tfZa4lJV5UOqxAF6tma9s8lGm3WwvVXDX1-HRIFyKCeP_H5vNDOvKF4yOmdUiw-bEeLcyDlnc8aYFo-KGaOGlUoa-riYUcp1WUsunxbPYlxRSk1V05PixAiuqprNisU52SLERGLC4AcC061PwW-W5AzDglfvSR9JwOgmbEmzJdC2fer9SHxH4JcfkMCY-m4aFzDEXLcZbieX4QFvMH9lbolrfF486TKBLw7vaXH96fLHxZfy6tvnrxfnV6WrlE6lEVQga1pg0jgppW6auuLKaUAnJGrUrtGVajpVV1jnHYC2HXJQwBXUIMRp8XHfdzM1a2wdjinAYDehX0PYWg-9va-M_dIu_I3lQlKV7e8O9uB_ThiTXffR4TDAiH6KVufDVZyx_4JMca6Mkhl8-w-48lMY8w0sp0xyLiuTIbqHXPAxBuyOAzNqd0HbXdDWSMuZ_R10trz-e9Gj4ZBs1t8c9J3zqN7rcPYwYbtpGBLepoy-2qOrmHw4sjIfQ_-ZpANvYRH6aK-_M2M01Xm3h3QlasHFHd3D1_c</recordid><startdate>19971014</startdate><enddate>19971014</enddate><creator>Gachotte, D</creator><creator>Pierson, C.A</creator><creator>Lees, N.D</creator><creator>Barbuch, R</creator><creator>Koegel, C</creator><creator>Bard, M</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences of the USA</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19971014</creationdate><title>A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme</title><author>Gachotte, D ; Pierson, C.A ; Lees, N.D ; Barbuch, R ; Koegel, C ; Bard, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-9303e1bda149c4447bb8526c7aec34e7e7cb756bf685e8265a0dfe2a6a26a8a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Antibiotics</topic><topic>Antifungal Agents - pharmacology</topic><topic>Antifungals</topic><topic>Azoles</topic><topic>Azoles - pharmacology</topic><topic>Bacteria</topic><topic>Bards</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>C-4 STEROL METHYL OXIDASE</topic><topic>CITOCROMO P450</topic><topic>CLOTRIMAZOLE</topic><topic>Clotrimazole - pharmacology</topic><topic>CROSSBREDS</topic><topic>CYTOCHROME P450</topic><topic>DRUGS</topic><topic>ERGOSTEROL</topic><topic>ESTEROIDES</topic><topic>ESTEROLES</topic><topic>FENOTIPOS</topic><topic>FONGICIDE</topic><topic>FUNGICIDAS</topic><topic>FUNGICIDES</topic><topic>GENE</topic><topic>GENES</topic><topic>Genes, Fungal</topic><topic>Genetic mutation</topic><topic>GENETIC TRANSFORMATION</topic><topic>Genotype</topic><topic>HAEMOGLOBIN</topic><topic>Heme - metabolism</topic><topic>HEMOGLOBINA</topic><topic>HEMOGLOBINE</topic><topic>INHIBITOR GENES</topic><topic>ITRACONAZOLE</topic><topic>Itraconazole - pharmacology</topic><topic>KETOCONAZOLE</topic><topic>Ketoconazole - pharmacology</topic><topic>LANOSTEROL</topic><topic>Lanosterol - metabolism</topic><topic>LANOSTEROL 14ALPHA-DEMETHYLASE</topic><topic>LIPOGENESE</topic><topic>LIPOGENESIS</topic><topic>MEDICAMENT</topic><topic>MEDICAMENTOS</topic><topic>Mixed Function Oxygenases - genetics</topic><topic>MUTACION</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>MUTATION</topic><topic>OXIDOREDUCTASES</topic><topic>OXIDORREDUCTASAS</topic><topic>OXYDOREDUCTASE</topic><topic>PHENOTYPE</topic><topic>PHENOTYPES</topic><topic>Plasmids</topic><topic>PRODUCTOS DEL CRUZAMIENTO</topic><topic>PRODUIT DE CROISEMENT</topic><topic>Radiocarbon</topic><topic>SACCHAROMYCES</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>SEGREGACION</topic><topic>SEGREGATION</topic><topic>STEROIDE</topic><topic>STEROIDS</topic><topic>STEROL</topic><topic>STEROLS</topic><topic>Sterols - metabolism</topic><topic>Suppression, Genetic</topic><topic>SUPPRESSOR GENES</topic><topic>SUPPRESSOR MUTATIONS</topic><topic>TRANSFORMACION GENETICA</topic><topic>TRANSFORMATION GENETIQUE</topic><topic>UNSPECIFIC MONOOXYGENASE</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gachotte, D</creatorcontrib><creatorcontrib>Pierson, C.A</creatorcontrib><creatorcontrib>Lees, N.D</creatorcontrib><creatorcontrib>Barbuch, R</creatorcontrib><creatorcontrib>Koegel, C</creatorcontrib><creatorcontrib>Bard, M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gachotte, D</au><au>Pierson, C.A</au><au>Lees, N.D</au><au>Barbuch, R</au><au>Koegel, C</au><au>Bard, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1997-10-14</date><risdate>1997</risdate><volume>94</volume><issue>21</issue><spage>11173</spage><epage>11178</epage><pages>11173-11178</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Genetic disruption of the Saccharomyces cerevisiae C-4 sterol methyl oxidase ERG25 gene leads to sterol auxotrophy. We have characterized a suppression system that requires two mutations to restore viability to this disrupted strain. One suppressor mutation is erg11, which is blocked in 14 alpha-demethylation of lanosterol and is itself an auxotroph. The second suppressor mutation required is either slu1 or slu2 (suppressor of lanosterol utilization). These mutations are leaky versions of HEM2 and HEM4, respectively; addition of exogenous hemin reverses the suppressing effects of slu1 and slu2. Suppression of erg25 by erg11 slu1 (or erg11 slu2) results in a slow-growing strain in which lanosterol, the first sterol in the pathway, accumulates. This result indicates that endogenously synthesized lanosterol can substitute for ergosterol and support growth. In the triple mutants, all but 1 (ERG6) of the 13 subsequent reactions of the ergosterol pathway are inactive. Azole antibiotics (clotrimazole, ketoconazole, and itraconazole) widely used to combat fungal infections are known to do so by inhibiting the ERG11 gene product, the 14 alpha-demethylase. In this investigation, we demonstrate that treatment of the sterol auxotrophs erg25 slu1 or erg25 slu2 with azole antibiotics paradoxically restores viability to these strains in the absence of sterol supplementation via the suppression system we have described</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9326581</pmid><doi>10.1073/pnas.94.21.11173</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1997-10, Vol.94 (21), p.11173-11178
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_79325211
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Antibiotics
Antifungal Agents - pharmacology
Antifungals
Azoles
Azoles - pharmacology
Bacteria
Bards
Biochemistry
Biological Sciences
Biosynthesis
C-4 STEROL METHYL OXIDASE
CITOCROMO P450
CLOTRIMAZOLE
Clotrimazole - pharmacology
CROSSBREDS
CYTOCHROME P450
DRUGS
ERGOSTEROL
ESTEROIDES
ESTEROLES
FENOTIPOS
FONGICIDE
FUNGICIDAS
FUNGICIDES
GENE
GENES
Genes, Fungal
Genetic mutation
GENETIC TRANSFORMATION
Genotype
HAEMOGLOBIN
Heme - metabolism
HEMOGLOBINA
HEMOGLOBINE
INHIBITOR GENES
ITRACONAZOLE
Itraconazole - pharmacology
KETOCONAZOLE
Ketoconazole - pharmacology
LANOSTEROL
Lanosterol - metabolism
LANOSTEROL 14ALPHA-DEMETHYLASE
LIPOGENESE
LIPOGENESIS
MEDICAMENT
MEDICAMENTOS
Mixed Function Oxygenases - genetics
MUTACION
MUTANT
MUTANTES
MUTANTS
MUTATION
OXIDOREDUCTASES
OXIDORREDUCTASAS
OXYDOREDUCTASE
PHENOTYPE
PHENOTYPES
Plasmids
PRODUCTOS DEL CRUZAMIENTO
PRODUIT DE CROISEMENT
Radiocarbon
SACCHAROMYCES
SACCHAROMYCES CEREVISIAE
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - physiology
SEGREGACION
SEGREGATION
STEROIDE
STEROIDS
STEROL
STEROLS
Sterols - metabolism
Suppression, Genetic
SUPPRESSOR GENES
SUPPRESSOR MUTATIONS
TRANSFORMACION GENETICA
TRANSFORMATION GENETIQUE
UNSPECIFIC MONOOXYGENASE
Yeasts
title A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20yeast%20sterol%20auxotroph%20(erg25)%20is%20rescued%20by%20addition%20of%20azole%20antifungals%20and%20reduced%20levels%20of%20heme&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gachotte,%20D&rft.date=1997-10-14&rft.volume=94&rft.issue=21&rft.spage=11173&rft.epage=11178&rft.pages=11173-11178&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.94.21.11173&rft_dat=%3Cjstor_proqu%3E43257%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-9303e1bda149c4447bb8526c7aec34e7e7cb756bf685e8265a0dfe2a6a26a8a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201422459&rft_id=info:pmid/9326581&rft_jstor_id=43257&rfr_iscdi=true