Loading…
Heteromeric assembly of the cytosolic glutamine synthetase polypeptides of Medicago truncatula: complementation of a glnA Escherichia coli mutant with a plant domain-swapped enzyme
We have cloned and sequenced the cDNAs corresponding to the two cytosolic glutamine synthetase (GS) polypeptides (a and b) of Medicago truncatula. Using these two cDNAs we have prepared a construct encoding the N-terminal domain of b and the C-terminal domain of a in order to produce a domain-swappe...
Saved in:
Published in: | Plant molecular biology 1997-11, Vol.35 (5), p.623-632 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-fcf8ca1dc2e4dae14eff142a31a4f94faad1595886bbedae74eca753fffc65223 |
---|---|
cites | |
container_end_page | 632 |
container_issue | 5 |
container_start_page | 623 |
container_title | Plant molecular biology |
container_volume | 35 |
creator | Carvalho, H Sunkel, C Salema, R Cullimore, J.V |
description | We have cloned and sequenced the cDNAs corresponding to the two cytosolic glutamine synthetase (GS) polypeptides (a and b) of Medicago truncatula. Using these two cDNAs we have prepared a construct encoding the N-terminal domain of b and the C-terminal domain of a in order to produce a domain-swapped polypeptide which should assemble to give an enzyme containing chimeric active sites. Both the native and the domain-swapped enzymes were expressed in Escherichia coli where they were catalytically and physiologically active as they were able to rescue a glnA deletion mutant. The expressed polypeptides were of the correct size and the isoenzymes behaved similarly to their native homologues on ion-exchange chromatography. We have found slight differences in the kinetic properties of the purified enzymes and in the modulation of their activities by several putative cellular effectors. In vitro dissociation of the purified a and b homo-octamers, followed by reassociation, showed that the subunits are able to self-assemble, perhaps randomly, to form heteromeric isoenzymes. Moreover, heteromeric isoenzymes occur in the plant as revealed by studies on the GS isoenzymes of nodules, roots, stems and stipules. |
doi_str_mv | 10.1023/A:1005884304303 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_79362424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16255646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-fcf8ca1dc2e4dae14eff142a31a4f94faad1595886bbedae74eca753fffc65223</originalsourceid><addsrcrecordid>eNqFkj1vFDEQhi0ECkegpkJYKegW_LVf6U5RSJCCKCD1as47vnPkj2XtVbT8Ln4gPuWqNEgjjaz38bz2zBDynrPPnAn5ZXvJGau7TklWQr4gG163sqqZ6F6SDeNNWynFxWvyJqUHxgosmzNy1kvVi05uyN9bzDhHj7PVFFJCv3MrjYbmA1K95piiK8reLRm8DUjTGoqUISGdolsnnLIdMR2vfMfRathHmuclaMiLg0uqo58cegwZso3hyEEpF7b0OunD0fZgoVDOUl88QqaPNh8KM7njYYwebKjSI0wTjhTDn9XjW_LKgEv47pTPyf3X619Xt9Xdj5tvV9u7SkupcmW06TTwUQtUIyBXaAxXAiQHZXplAEZe96V5zW6HBWgVamhraYzRTS2EPCefnupOc_y9YMqDt0mjKy_DuKSh7WUjlFD_BXkj6rpRTQEvnoEPcZlD-cTQtlzVopeyQB9O0LLzOA7TbD3M63AaWtE_PukG4gD72abh_qdgXJaht2UVmPwHOien7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>771452933</pqid></control><display><type>article</type><title>Heteromeric assembly of the cytosolic glutamine synthetase polypeptides of Medicago truncatula: complementation of a glnA Escherichia coli mutant with a plant domain-swapped enzyme</title><source>Springer Link</source><creator>Carvalho, H ; Sunkel, C ; Salema, R ; Cullimore, J.V</creator><creatorcontrib>Carvalho, H ; Sunkel, C ; Salema, R ; Cullimore, J.V</creatorcontrib><description>We have cloned and sequenced the cDNAs corresponding to the two cytosolic glutamine synthetase (GS) polypeptides (a and b) of Medicago truncatula. Using these two cDNAs we have prepared a construct encoding the N-terminal domain of b and the C-terminal domain of a in order to produce a domain-swapped polypeptide which should assemble to give an enzyme containing chimeric active sites. Both the native and the domain-swapped enzymes were expressed in Escherichia coli where they were catalytically and physiologically active as they were able to rescue a glnA deletion mutant. The expressed polypeptides were of the correct size and the isoenzymes behaved similarly to their native homologues on ion-exchange chromatography. We have found slight differences in the kinetic properties of the purified enzymes and in the modulation of their activities by several putative cellular effectors. In vitro dissociation of the purified a and b homo-octamers, followed by reassociation, showed that the subunits are able to self-assemble, perhaps randomly, to form heteromeric isoenzymes. Moreover, heteromeric isoenzymes occur in the plant as revealed by studies on the GS isoenzymes of nodules, roots, stems and stipules.</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1023/A:1005884304303</identifier><identifier>PMID: 9349283</identifier><language>eng</language><publisher>Netherlands: Springer Nature B.V</publisher><subject>Alfalfa ; Amino Acid Sequence ; amino acid sequences ; Binding Sites ; Cloning, Molecular ; complementary DNA ; cytosol ; Cytosol - enzymology ; E coli ; enzyme activity ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; genbank/y10267 ; genbank/y10268 ; genetic complementation ; Genetic Complementation Test ; glutamate-ammonia ligase ; Glutamate-Ammonia Ligase - biosynthesis ; Glutamate-Ammonia Ligase - chemistry ; Glutamate-Ammonia Ligase - genetics ; Glutamate-Ammonia Ligase - metabolism ; interactions ; Isoenzymes - biosynthesis ; Isoenzymes - chemistry ; Isoenzymes - genetics ; Isoenzymes - metabolism ; isozymes ; Kinetics ; Medicago sativa - enzymology ; Medicago sativa - genetics ; Medicago truncatula ; Molecular Sequence Data ; mutants ; nucleotide sequences ; Peptides - chemistry ; Polypeptides ; Recombinant Fusion Proteins - biosynthesis ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - metabolism ; Sequence Analysis, DNA ; Sequence Deletion</subject><ispartof>Plant molecular biology, 1997-11, Vol.35 (5), p.623-632</ispartof><rights>Kluwer Academic Publishers 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-fcf8ca1dc2e4dae14eff142a31a4f94faad1595886bbedae74eca753fffc65223</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9349283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carvalho, H</creatorcontrib><creatorcontrib>Sunkel, C</creatorcontrib><creatorcontrib>Salema, R</creatorcontrib><creatorcontrib>Cullimore, J.V</creatorcontrib><title>Heteromeric assembly of the cytosolic glutamine synthetase polypeptides of Medicago truncatula: complementation of a glnA Escherichia coli mutant with a plant domain-swapped enzyme</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><description>We have cloned and sequenced the cDNAs corresponding to the two cytosolic glutamine synthetase (GS) polypeptides (a and b) of Medicago truncatula. Using these two cDNAs we have prepared a construct encoding the N-terminal domain of b and the C-terminal domain of a in order to produce a domain-swapped polypeptide which should assemble to give an enzyme containing chimeric active sites. Both the native and the domain-swapped enzymes were expressed in Escherichia coli where they were catalytically and physiologically active as they were able to rescue a glnA deletion mutant. The expressed polypeptides were of the correct size and the isoenzymes behaved similarly to their native homologues on ion-exchange chromatography. We have found slight differences in the kinetic properties of the purified enzymes and in the modulation of their activities by several putative cellular effectors. In vitro dissociation of the purified a and b homo-octamers, followed by reassociation, showed that the subunits are able to self-assemble, perhaps randomly, to form heteromeric isoenzymes. Moreover, heteromeric isoenzymes occur in the plant as revealed by studies on the GS isoenzymes of nodules, roots, stems and stipules.</description><subject>Alfalfa</subject><subject>Amino Acid Sequence</subject><subject>amino acid sequences</subject><subject>Binding Sites</subject><subject>Cloning, Molecular</subject><subject>complementary DNA</subject><subject>cytosol</subject><subject>Cytosol - enzymology</subject><subject>E coli</subject><subject>enzyme activity</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>genbank/y10267</subject><subject>genbank/y10268</subject><subject>genetic complementation</subject><subject>Genetic Complementation Test</subject><subject>glutamate-ammonia ligase</subject><subject>Glutamate-Ammonia Ligase - biosynthesis</subject><subject>Glutamate-Ammonia Ligase - chemistry</subject><subject>Glutamate-Ammonia Ligase - genetics</subject><subject>Glutamate-Ammonia Ligase - metabolism</subject><subject>interactions</subject><subject>Isoenzymes - biosynthesis</subject><subject>Isoenzymes - chemistry</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - metabolism</subject><subject>isozymes</subject><subject>Kinetics</subject><subject>Medicago sativa - enzymology</subject><subject>Medicago sativa - genetics</subject><subject>Medicago truncatula</subject><subject>Molecular Sequence Data</subject><subject>mutants</subject><subject>nucleotide sequences</subject><subject>Peptides - chemistry</subject><subject>Polypeptides</subject><subject>Recombinant Fusion Proteins - biosynthesis</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Sequence Analysis, DNA</subject><subject>Sequence Deletion</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkj1vFDEQhi0ECkegpkJYKegW_LVf6U5RSJCCKCD1as47vnPkj2XtVbT8Ln4gPuWqNEgjjaz38bz2zBDynrPPnAn5ZXvJGau7TklWQr4gG163sqqZ6F6SDeNNWynFxWvyJqUHxgosmzNy1kvVi05uyN9bzDhHj7PVFFJCv3MrjYbmA1K95piiK8reLRm8DUjTGoqUISGdolsnnLIdMR2vfMfRathHmuclaMiLg0uqo58cegwZso3hyEEpF7b0OunD0fZgoVDOUl88QqaPNh8KM7njYYwebKjSI0wTjhTDn9XjW_LKgEv47pTPyf3X619Xt9Xdj5tvV9u7SkupcmW06TTwUQtUIyBXaAxXAiQHZXplAEZe96V5zW6HBWgVamhraYzRTS2EPCefnupOc_y9YMqDt0mjKy_DuKSh7WUjlFD_BXkj6rpRTQEvnoEPcZlD-cTQtlzVopeyQB9O0LLzOA7TbD3M63AaWtE_PukG4gD72abh_qdgXJaht2UVmPwHOien7A</recordid><startdate>19971101</startdate><enddate>19971101</enddate><creator>Carvalho, H</creator><creator>Sunkel, C</creator><creator>Salema, R</creator><creator>Cullimore, J.V</creator><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19971101</creationdate><title>Heteromeric assembly of the cytosolic glutamine synthetase polypeptides of Medicago truncatula: complementation of a glnA Escherichia coli mutant with a plant domain-swapped enzyme</title><author>Carvalho, H ; Sunkel, C ; Salema, R ; Cullimore, J.V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-fcf8ca1dc2e4dae14eff142a31a4f94faad1595886bbedae74eca753fffc65223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Alfalfa</topic><topic>Amino Acid Sequence</topic><topic>amino acid sequences</topic><topic>Binding Sites</topic><topic>Cloning, Molecular</topic><topic>complementary DNA</topic><topic>cytosol</topic><topic>Cytosol - enzymology</topic><topic>E coli</topic><topic>enzyme activity</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>genbank/y10267</topic><topic>genbank/y10268</topic><topic>genetic complementation</topic><topic>Genetic Complementation Test</topic><topic>glutamate-ammonia ligase</topic><topic>Glutamate-Ammonia Ligase - biosynthesis</topic><topic>Glutamate-Ammonia Ligase - chemistry</topic><topic>Glutamate-Ammonia Ligase - genetics</topic><topic>Glutamate-Ammonia Ligase - metabolism</topic><topic>interactions</topic><topic>Isoenzymes - biosynthesis</topic><topic>Isoenzymes - chemistry</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - metabolism</topic><topic>isozymes</topic><topic>Kinetics</topic><topic>Medicago sativa - enzymology</topic><topic>Medicago sativa - genetics</topic><topic>Medicago truncatula</topic><topic>Molecular Sequence Data</topic><topic>mutants</topic><topic>nucleotide sequences</topic><topic>Peptides - chemistry</topic><topic>Polypeptides</topic><topic>Recombinant Fusion Proteins - biosynthesis</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Sequence Analysis, DNA</topic><topic>Sequence Deletion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, H</creatorcontrib><creatorcontrib>Sunkel, C</creatorcontrib><creatorcontrib>Salema, R</creatorcontrib><creatorcontrib>Cullimore, J.V</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, H</au><au>Sunkel, C</au><au>Salema, R</au><au>Cullimore, J.V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heteromeric assembly of the cytosolic glutamine synthetase polypeptides of Medicago truncatula: complementation of a glnA Escherichia coli mutant with a plant domain-swapped enzyme</atitle><jtitle>Plant molecular biology</jtitle><addtitle>Plant Mol Biol</addtitle><date>1997-11-01</date><risdate>1997</risdate><volume>35</volume><issue>5</issue><spage>623</spage><epage>632</epage><pages>623-632</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><abstract>We have cloned and sequenced the cDNAs corresponding to the two cytosolic glutamine synthetase (GS) polypeptides (a and b) of Medicago truncatula. Using these two cDNAs we have prepared a construct encoding the N-terminal domain of b and the C-terminal domain of a in order to produce a domain-swapped polypeptide which should assemble to give an enzyme containing chimeric active sites. Both the native and the domain-swapped enzymes were expressed in Escherichia coli where they were catalytically and physiologically active as they were able to rescue a glnA deletion mutant. The expressed polypeptides were of the correct size and the isoenzymes behaved similarly to their native homologues on ion-exchange chromatography. We have found slight differences in the kinetic properties of the purified enzymes and in the modulation of their activities by several putative cellular effectors. In vitro dissociation of the purified a and b homo-octamers, followed by reassociation, showed that the subunits are able to self-assemble, perhaps randomly, to form heteromeric isoenzymes. Moreover, heteromeric isoenzymes occur in the plant as revealed by studies on the GS isoenzymes of nodules, roots, stems and stipules.</abstract><cop>Netherlands</cop><pub>Springer Nature B.V</pub><pmid>9349283</pmid><doi>10.1023/A:1005884304303</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-4412 |
ispartof | Plant molecular biology, 1997-11, Vol.35 (5), p.623-632 |
issn | 0167-4412 1573-5028 |
language | eng |
recordid | cdi_proquest_miscellaneous_79362424 |
source | Springer Link |
subjects | Alfalfa Amino Acid Sequence amino acid sequences Binding Sites Cloning, Molecular complementary DNA cytosol Cytosol - enzymology E coli enzyme activity Enzymes Escherichia coli Escherichia coli - genetics genbank/y10267 genbank/y10268 genetic complementation Genetic Complementation Test glutamate-ammonia ligase Glutamate-Ammonia Ligase - biosynthesis Glutamate-Ammonia Ligase - chemistry Glutamate-Ammonia Ligase - genetics Glutamate-Ammonia Ligase - metabolism interactions Isoenzymes - biosynthesis Isoenzymes - chemistry Isoenzymes - genetics Isoenzymes - metabolism isozymes Kinetics Medicago sativa - enzymology Medicago sativa - genetics Medicago truncatula Molecular Sequence Data mutants nucleotide sequences Peptides - chemistry Polypeptides Recombinant Fusion Proteins - biosynthesis Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - metabolism Sequence Analysis, DNA Sequence Deletion |
title | Heteromeric assembly of the cytosolic glutamine synthetase polypeptides of Medicago truncatula: complementation of a glnA Escherichia coli mutant with a plant domain-swapped enzyme |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heteromeric%20assembly%20of%20the%20cytosolic%20glutamine%20synthetase%20polypeptides%20of%20Medicago%20truncatula:%20complementation%20of%20a%20glnA%20Escherichia%20coli%20mutant%20with%20a%20plant%20domain-swapped%20enzyme&rft.jtitle=Plant%20molecular%20biology&rft.au=Carvalho,%20H&rft.date=1997-11-01&rft.volume=35&rft.issue=5&rft.spage=623&rft.epage=632&rft.pages=623-632&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1023/A:1005884304303&rft_dat=%3Cproquest_pubme%3E16255646%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-fcf8ca1dc2e4dae14eff142a31a4f94faad1595886bbedae74eca753fffc65223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=771452933&rft_id=info:pmid/9349283&rfr_iscdi=true |